
 1

A Guidebook for Anaplan model building

v2019.01

 2

community.anaplan.com/planual

 3

Introduction

Welcome to The Planual, the definitive guidebook for Anaplan modelling best practices. Over
the last year we have consulted with employees, customers, partners, and Master
Anaplanners to collect, evaluate, and define the techniques and structures that produce the
most optimal models in the Anaplan platform. We also bring our many years of modelling
experience in Anaplan and other similar products. In what follows, we are happy to provide
the first ever version of “the rules.”

In building these standards we considered three main aspects:

 Performance

Usability

Sustainability

The standards (rules) contained in the Planual balance these three aspects to ensure the best outcome across the whole Anaplan user base—model builders
and end users alike. We have tried to make the rules as general as possible. The Planual is not about formula syntax per se, although there are elements for
formula structure included when applicable.

Importantly, these rules are a guide, and there will inevitably be occasions that justify deviating from them. To accommodate these, we have included some of
the known exceptions to the rules. However, we recommend that you follow the standards as much as possible (they’re proven to work!) and carefully
consider the consequences when you move away from them.

As with the Anaplan platform itself, this will be an evolving document. We will add to it and amend the rules as appropriate as new functionality gets delivered.
Feedback is a gift and a core value at Anaplan. We want your feedback to make improvements and corrections; these will help make the Planual the best it can
be.

Finally, I would like to thank everyone who has helped in putting this together; without the creativity and collaboration of all who contributed, this would not
have been possible.

I hope you find the Planual useful, learn from it, and ultimately build the best Anaplan models for you and your users.

Yours in modelling,

David Smith: Vice President – Operational Excellence Group June 2019

 4

INTRODUCTION 3

THE ZEN OF ANAPLAN 7

PLANS 8

PLANUAL CONVENTIONS 9

1 CENTRAL LIBRARY 10

1.01 TIME 10

1.02 VERSIONS 12

1.03 USERS AND ROLES 13

1.04 CONTENTS 14

1.05 LISTS 15

1.06 SUBSETS 18

1.07 LINE ITEM SUBSETS 19

1.08 EMOJIS 20

2 ENGINE 21

2.01 MODULES 21

2.02 FORMULAS 26

2.03 LINE ITEMS 31

2.04 SAVED VIEWS 32

 5

3 UX PRINCIPLES 33

3.01 HIERARCHY OF INFORMATION 33

3.02 SMART GROUPING 34

3.03 REDUCE VISUAL LOAD 34

3.04 PROGRESSIVE DISCLOSURE 35

3.05 USE CONSISTENCY AND STANDARDS 36

3.06 PROVIDE HELP AND GUIDANCE 37

3.07 USE THE CORRECT DATA TYPE 38

3.08 GIVE USERS VISIBILITY INTO STATUS 41

3.09 MATCH WITH REAL WORLD SCENARIOS 41

3.10 CHECK IN WITH END USES FREQUENTLY 42

4 UX BUILD 43

4.01 DASHBOARDS 43

4.02 FILTERS 46

5 INTEGRATION 48

5.01 ACTIONS 48

5.02 PROCESSES 49

5.03 SOURCE MODELS 50

 6

5.04 IMPORTS 50

5.05 EXPORTS 52

5.06 IMPORT DATA SOURCES 53

5.07 DATA HUB 54

6 APPLICATION LIFECYCLE MANAGEMENT 57

6.01 REVISION TAGS 57

6.02 PRODUCTION LISTS 58

6.03 DEPLOYED MODE 59

6.04 MANAGING CHANGES DURING DEVELOPMENT 60

6.05 ARCHITECTURE 61

 7

The Zen of Anaplan

 Ten guidelines

• Just because you CAN doesn’t mean you SHOULD

• Calculate once, reference many times

• Simple > complex

• Only calculate when you need to

• Sparsity is not your enemy

• Big and fast > small and slow

• Booleans = great. Text = bad

• Text joins = worse

• Don’t let exceptions overcomplicate the model

• Sums and lookups are good, but never together

 8

PLANS
PLANS is set of rules that aim to help structure and design Anaplan models. Together, they clarify good model design for all users—individual Anaplanners,
teams, and anyone handing models over to others.

PLANS stands for:

Performance

To optimize the Anaplan Engine (Hyperblock) certain formulas and structures
work better than others. One of the advantages of following the standards, is
that performance improvements are a by-product of the other elements. While
there will occasionally be scenarios that call for “breaking the rules,” we can be
aware of the consequences and use them carefully.

Logical

Build models and formulae to be logical. Complex formula calculations are more
efficient when are broken up. Create modules to have a sole purpose, following
a logical structure of Inputs, Calculations, and Outputs. These should be
supported by Data and System Modules.

Auditable

Use notes and comments to help describe the calculations. Break up formulae
for better understanding, performance and maintainability

Necessary

Don’t duplicate expressions, store and calculate once, reference many times,
use appropriate dimensionality, don’t calculate when you don’t need to.

Sustainable
Build with the future in mind and think about process cycles and updates. Make
the model flexible to allow for easy changes to be made when required. Avoid
hard coding (e.g. SELECT and direct references to list items).

 9

Planual Conventions

The Planual is organised by Articles, Chapters, Rules and associated Exceptions.

Rules are numbered as part of the articles and chapter:

1.01-01 Never use SELECT with Time

Article Number = 1 (Library)

Chapter Number = 01 (Time)

Rule Number = 01 (Never use SELECT with Time)

1.01 Time

1.01-01 Never use SELECT with Time

 This goes against the Sustainable
element of PLANS and the hard coding
can cause issues when updating the
timescales of the model. Modules with
Time formatted items to be used as
sums and lookup are the better option

2.02-14 Avoid using SELECT

1.01-01a Generic
Time periods

It is OK to use SELECT with Generic Time
periods such as Actual Period, Current
Period, YTD, YTG, ALL Periods

Cross references are shown under the rule description:

2.02-14 Avoid using SELECT

Also included are references to Community articles which cover the rule content in
more detail. Entering the title in Community search should take you to the article in
question:

Time Range Application

Exceptions to the rules are shown under each rule (as applicable) suffixed by a letter
and shown in italics:

1.01-01a Generic Time periods

https://community.anaplan.com/t5/Knowledge/Time-Range-Application/ta-p/30479

 10

1 Central Library
This section describes the rules for the Anaplan Central Library. The Central Library is where we hold and create the structures or dimensions of the model.

1.01 Time

1.01-01 Never use SELECT with Time

 This goes against the Sustainable element of PLANS and the hard coding can cause issues when updating the timescales of the
model. Modules with Time formatted items to be used as sums and lookup are the better option

2.02-14 Avoid using SELECT

1.01-01a Generic Time periods It is OK to use SELECT with Generic Time periods such as Actual Period, Current Period, YTD, YTG, ALL Periods

1.01-02 Use the Model Calendar by default

 As the Model Calendar is dynamic, it should be used for the majority of modules. Choose suitable time settings that cover
most of the requirements

Time Range Application

https://community.anaplan.com/t5/Knowledge/Time-Range-Application/ta-p/30479

 11

1.01-03 Use Current Period

 Utilising the Current Period within the Time Settings allows the use of CURRENTPERIODSTART(), CURRENTPERIODEND() and can
be used to create lookup modules to hold the current period automatically

1.01-03a Daily Timescales The lowest granularity for Time Settings is weekly, so if the Current Period needs to reflect a daily timescale, the Current
Period setting cannot be used

1.01-03b Non-Admin updates Should you need non- Workspace Administrators to update the setting, a formatted line item can be used instead

1.01-04 Consider All Periods

 Consider the use of All Periods. This is effectively the Top Level for time and whilst increasing the model cell count very slightly
it does allow for flexibility in modelling

1.01-05 Exclude subtotals by default

 Turn the "include" settings off by default and only include these if absolutely necessary. You can set different "includes"
settings for different Time Ranges

1.01-06 Time Range Naming

 Keep the naming short using the FYxx-FYyy format. This allows the user to see the time range in the module blueprint without
referring back to the Time Range itself

Time Range Application

https://community.anaplan.com/t5/Knowledge/Time-Range-Application/ta-p/30479

 12

1.01-07 Time Ranges

 Use Time Ranges to optimise the modules where the default model calendar is not appropriate. Consider the dimensionality
for the data and set up the Time Range accordingly

Time Range Application

1.01-08 Daily Timescales on large timescales

 Review the need for daily granularity for long timescales. Use time ranges to restrict the daily calendars and use PREVIOUS
rather than CUMULATE

2.02-10 Using PREVIOUS vs CUMULATE

Time Range Application

1.02 Versions

1.02-01 Use Current Version setting

 Utilising the Current Version (and Actual Version) within the Version Settings allows the use of CURRENTVERSION() and
ACTUALVERSION() for use in calculations and SELECT statements and ISCURRENTVERSION and ISACTUALVERSION() for Boolean
checks

2.02-14 Avoid using SELECT

https://community.anaplan.com/t5/Knowledge/Time-Range-Application/ta-p/30479
https://community.anaplan.com/t5/Knowledge/Time-Range-Application/ta-p/30479

 13

1.02-02 Do not use formulas in the version settings

 Whilst this is a simple construct and it might be OK for simple models; it effectively adds size to models every time versions are
used in a module even if you don't want the variance. Also, in modules with 3 or more dimensions if you have calculation line
items and aggregations the results may not always be accurate; you cannot amend the summary method for a version formula
within the versions setting

1.02-03 Edit To / Edit From

 Use these as a simple, administrator lead control for read and write access to versions. For more granular control use Dynamic
Cell Access

1.02-04 Always move switchover dates forward

 Using switchover means the historic periods are effectively cleared out, so switchover should be moved forward only. Moving
it backwards will leave zero in the respective period removing any values that were previously held

1.03 Users and Roles

1.03-01 Only give write access to lists when needed

 Unless the end users need to edit the list (add, delete members), access does not need to be set. Adding roles to lists increases
the memory usage, so only use when necessary. A user can edit data in a module without needing to have access to the list

 14

1.03-02 Performance and size can be dependent on the Users list

 When Users list is heavily used, the number of users added can have a significant impact, be mindful of this and remove model
access from any Workspace users when not required

1.03-03 Set a landing dashboard by role

 Different roles should require a different entry point. Avoid a generic landing page if possible and create a specific dashboard
tailored for each role

1.04 Contents

1.04-01 Keep modules hidden for end users’ roles

 Users should only be entering data through dashboards, so remove Modules from the contents panel

1.04-02 Utilize Show Content On/Off for Different Functional Areas

 To reduce maintenance, create separate Functional Areas for dashboards and modules (e.g. Reports and Report Modules). In
the Contents tab, turn Show New Content "On" for all dashboard Functional Areas and "Off" for all module Functional Areas.
New dashboards will then be automatically added to the Contents when the role security is updated, but modules will not.

 15

1.05 Lists

1.05-01 Naming Convention

 Hierarchies should be prefixed with a letter signifying the name of the hierarchy and a number indicating the level. e.g. P1
Product Category, P2 Product Family, P3 Products. The is no need to add "L" as a prefix to lists

1.08-01 Don't use Emojis

Good Practice Naming Conventions

1.05-02 Always use a code

 Using codes is more efficient for loading and using lists so strive to always have a code for lists. This is especially important for
numbered lists.

1.05-04 Numbered List should always have a code

1.05-02a Static non hierarchy
lists

For simple static lists (such as Yes/No) it is OK not to have a code, but even then, Y and N can be used as codes

https://help.anaplan.com/anapedia/Content/Modeling/Good_Practice/Good_Practice_Naming_Conventions.html

 16

1.05-03 Avoid using List Properties

 List properties are the same as line items, but have many limitations, so keep it simple and have one place for calculations i.e.
Module.line item

1.05-03a Reference module line
items

Where the following exceptions are used, reference module line items through a formula where possible to keep the audit
trail valid

1.05-03b Numbered lists (and
related actions)

Assign actions, and associated filters require list properties

1.05-03c Exports List properties can be used as export labels

1.05-03d Conditional Dashboard
navigation

List properties are needed to facilitate navigation to different dashboards based on the selection in the list

1.05-03e Dependent drop downs

List properties are needed to create driver and dependant lists

1.05-04 Numbered List should always have a code

 If you are using Create or Assign actions for Numbered lists, try and incorporate a "code creation" action, as part of another
process

1.05-02 Always use a code

1.05-04a Combination of
Properties

If there is no code in the source, you will have to use combination of properties. Try and avoid if possible as this is slower to
import and more difficult to use without a code

 17

1.05-05 Format the Display Name property as a list if possible

 Format the Display Name property for Numbered lists as List Formatted, not text. This is more efficient, saves a line item,
minimizes text fields and simplifies mappings

1.05-06 Only use Top Level for ultimate parent

 Only use Top level for lists that will need sums so not Currency codes, or True/False (Indicators), or children in composite lists

1.05-07 Avoid Top Level for large flat lists

 If you need the totals, look to add dummy parents to make the calculations more efficient

1.05-08 Use Composite lists rather than ragged

 Composite lists are more flexible and calculate more efficiently so try and "balance" the hierarchies whenever possible

1.05-08a Chart of Accounts, or
financial reporting hierarchies

Chart of Accounts, financial reporting hierarchies are valid uses of non-composite lists

1.05-09 Create Placeholders in general lists

 Add place holders to organise General Lists and add Subsets and Line Item Subsets at the bottom

1.08-01 Don't use Emojis

 18

1.05-10 Never delete list and reload the list as a daily occurrence

 Use a unique key to update to values rather than delete and re-load

1.05-11 Do not embed Numeric values or Dates within the Code of a list

 Dates and values are "data" and should not be part of a code

1.05-12 Use formulas to derive properties of the list

 Based off the code of the list it should be possible to derive the properties; Calculating the values is more efficient than storing
text fields

1.05-13 Use Flat lists to store Metadata (in a system module)

 Avoid having hierarchies in Data Hub; these should only be applicable to the main planning models

5.07-01 No Hierarchies

1.06 Subsets

1.06-01 Naming convention

 Prefix the subset with the name of the list (e.g. P3 Products: Active Products)

1.08-01 Don't use Emojis

 19

1.06-02 Don't use subsets on large lists

 It is better to create a list on its own if the Subset is more than 75% of the list

1.06-03 Avoid single item subsets

 If possible, try and avoid single item subsets, if there is a top level in the list, a single item subset will always have two members

1.07 Line Item Subsets

1.07-01 Naming Convention

 Prefix with LIS: then a description or the module used in the Line Item Subset. For Line item subsets using multiple modules,
use a generic name that best describes its purpose

1.08-01 Don't use Emojis

1.07-02 Version Line Item subsets

 Use Line Item subsets to create different numeric formulae to avoid multiple Ifs

 20

1.08 Emojis

1.08-01 Don't use Emojis

 Don't use Emoji or symbols in any naming of lists, modules or actions. They can cause issues with integration and different
browsers

 21

2 Engine
This section describes the rules around the Anaplan Engine. At the heart of Anaplan is the Hyperblock in-memory engine which combines the cell-based
flexibility of a spreadsheet, the scalability and querying capabilities of relational databases as well as the calculation/aggregation abilities of multidimensional
cubes.

2.01 Modules

2.01-01 Naming Convention

 As short as is practical. Use Alpha numeric to help identify modules from long names. There is no need to prefix modules in
line with DISCO. It is better to align them with functional areas

4.01-10 Turn off the Module name

Naming Conventions

2.01-01a Space saving for User
Facing Modules

User facing modules can be renamed to a more descriptive name if required to save on dashboard space, but be mindful of
not cramming too much onto a dashboard as per the general design principles

2.01-02 Functional Areas

 Use functional areas to categorise modules

2.01-03 Add "dummy" modules as separators

 Use these to provide sections and ordering to the Modules list, but don't use Emojis

1.08-01 Don't use Emojis

https://help.anaplan.com/anapedia/Content/Modeling/Good_Practice/Good_Practice_Naming_Conventions.html

 22

2.01-04 Use the DISCO methodology for Module design

 Within functional areas, group "like" modules together. Design for the type of module and use the appropriate structures

Best Practices for Module Design

2.01-05 Don’t use DISCO as functional areas

 The DISCO convention is designed to categorise types of modules. Within a functional area you may have multiple types of
modules

2.01-04 Use the DISCO methodology for Module design

2.01-05a Simple models If the model is simple, DISCO can be used as the naming for functional areas

https://community.anaplan.com/t5/Knowledge/Best-Practices-for-Module-Design/ta-p/35993

 23

2.01-06 Avoid using Subsidiary Views

 Subsidiary views are difficult to work with and audit. Try and minimise their use especially for calculation modules; create
groups of calculation modules instead with like dimensionality

2.01-12 Group formulas with like dimensionality

2.01-06a Display on Dashboards
for analysis or filtering

Sometimes, to enhance the end user experience, attributes are needed to be shown on dashboards

2.01-06b Ratio Formulas Numeric values for ratios need to be in the same module and are unlikely to need the full dimensionality

2.01-06c Synchronization for
some dashboards

If you have dashboards that need to synchronize from a module, sometimes a specific line item is needed

2.01-06d Line items needed for
sorting

Sometimes to facilitate a sort, the line items don't need the full module dimensionality

2.01-06e Reporting or Export
modules

To utilise filtering in reports or to provide attributes for exports, you may need to have line items for the non-dimensional
attributes. Ensure these are set as subsidiary views to minimise the calculations

2.01-07 Time Settings Module

 Create all functions and filters relating only to time in separate modules by week, month, quarter, year etc. They will only re-
calculate on model opening and when the time settings change

 24

2.01-08 Each major hierarchy should have a System module

 Create a System module to support all standing data and attributes about the hierarchy if it is used. As a minimum have the
code and parent as line items. if the hierarchy is not referenced in a formula, as a filter or a selector module on a dashboard
then it is not needed

Best Practices for Module Design

2.01-09 Use Lookup or Constants Modules

 Create a module with no dimensions to hold assumptions for Time, and other "SELECT" values

2.02-14 Avoid using SELECT

2.01-10 Calculation Modules

 Turn off summary options by default. It is better to use SUM for any downstream aggregation if not all levels are needed

2.01-10a All aggregation levels
are needed

If all aggregation levels are needed, then it is faster to use the native aggregation than use SUM formula

2.01-11 Keep the Dimension Order consistent

 Ensure the dimension order is consistent between modules. Calculations are faster if the common dimensions are in the same

order in the applies to. The size of the list is not as critical as the order

Dimension Order

https://community.anaplan.com/t5/Knowledge/Best-Practices-for-Module-Design/ta-p/35993
https://community.anaplan.com/t5/Knowledge/Dimension-Order/ta-p/32934

 25

2.01-12 Group formulas with like dimensionality

 Create Calculation modules to house sets of line items that use the same dimensionality. Avoid using Subsidiary views

2.01-06 Avoid using Subsidiary Views

2.01-13 Separate Transaction data from Attribute/Property data

 Keep the non-time-based data in a separate module from static attributes

2.01-14 Avoid using Select Levels and filters together

 Don't use Select levels combined with filters on the same hierarchy. It is a double filter and inefficient. Use one or the other.
Setting a Boolean line item in a System module with 'none' as the summary option will often achieve the same result

2.01-15 Filters in separate modules

 Try and keep filters in separate System modules. They can then be reused for different modules. In the notes section list
where this filter is used to prevent accidental deletion

2.01-16 Use Data Tags

 If not using for other reasons, use Data Tags to signify the DISCO category

 26

2.01-17 DCA Access Driver modules

 Create separate modules for Access Drivers for relevant combinations to be reused. Use different line items for different
settings if needed

2.02 Formulas

2.02-01 Nested IFs

 Avoid using multiple IFs. It is better to split the formula into more line items, use LOOKUPs or alternative constructs

2.02-02 <12 expressions in a formula

 If it takes you longer than one simple sentence to describe what the formula is doing, it is probably too long. Try not to mix
expressions

2.02-03 No Repeated expressions

 If the expression is repeated in the formula (or other modules), put it on a separate line item. “Calculate once, reference many
times”

 27

2.02-04 Text Strings

 Treat text strings with caution. Try and avoid multiple joins and split common joins to separate line items

2.02-05 Create "joins" in smallest hierarchy

Formula Optimisation in Anaplan

2.02-05 Create "joins" in smallest hierarchy

 If a text string join is needed, create the joins in the smaller hierarchies first to minimise the size of the text strings

2.02-04 Text Strings

Formula Optimisation in Anaplan

2.02-06 Comparing numbers

 It is faster to check A=B rather than A-B=0

2.02-07 Use Booleans instead of 1s & 0s

 Booleans take up 1/8th of the space as a number, so unless a numeric value is needed use TRUE or FALSE

https://community.anaplan.com/t5/Knowledge/Formula-Optimization-in-Anaplan/ta-p/41663
https://community.anaplan.com/t5/Knowledge/Formula-Optimization-in-Anaplan/ta-p/41663

 28

2.02-08 Never use SUM and LOOKUP together

 SUM and LOOKUP used in the same expression generally cause large formula calculations and may cause intermediate
relationship calculations especially if Time is a dimension or when the source and target structures are very different. Splitting
them into different modules and line items considerably reduces the size of the intermediate calculations

2.02-09 Aggregation rules (ANY, ALL, FIRSTNONBLANK)

 Utilise these summary methods to minimise the use of additional line items and IF statements

2.02-10 Using PREVIOUS vs CUMULATE

 For long timescales, using PREVIOUS is faster than CUMULATE due to the number of "reads" required for the calculation. So,
the expression should be: 'Calc line item' = 'data line item' + PREVIOUS('Calc line item') rather than CUMULATE('data line item').

2.02-10a Short Timescales

Where the number of periods is small, Cumulate is faster

2.02-11 Avoid using TEXTLIST

 TEXTLIST requires a lot of memory for calculations and should be avoided if possible, using two dimensional modules and
Boolean flags with ANY is a good alternative

2.02-12 No Hardcoding to List members

 Avoid direct references to list item. E.g. IF ITEM(list)=list.xx

2.02-13 Only use POST for its specific purpose

 Don't use POST for simple data offsets. OFFSET, LAG or MOVINGSUM are more efficient

 29

2.02-14 Avoid using SELECT

 Avoid hard coding using SELECT if possible. Use a constants module and use LOOKUP instead

1.01-01 Never use SELECT with Time

2.02-14a Versions It is OK to use SELECT for versions

2.02-14b For top level items on
non-composite lists

In Non-Composite lists, it is not possible to use LOOKUP to return the value, so it is OK to reference the Top Level item with
SELECT. For other items, it is better to use dummy parent lists and additional modules

2.02-15 FINDITEM on blanks

 If the list being referenced does not contain blanks, there is no need to check for blanks with IF ISNOTBLANK(List) THEN
FINDITEM(List, Text) ELSE BLANK

2.02-16 Use conditionals to stop unnecessary calculations

 In multiple conditional statements, try and include a conditional to prevent further referencing in the formula if the condition is
satisfied

2.02-17 Put the most common condition first

 For formula efficiency, put the conditional with the most common occurrence first in the formula

Ben Lempert

 30

2.02-18 Break up formulas

 The engine works more efficiently when calculations are broken up into separate line items. So, break up formula expressions
where possible. This is especially true for calculations that are referenced many times and/or calculations that don't change
that often

Formula Structure for Performance

2.02-19 Don't daisy chain

 Always refer back to the ultimate source if possible, to avoid creating more dependencies than necessary. This allows more
parallel calculations to be run increasing efficiency and speeding up calculations

2.02-20 Don't use RANK formulas with long timescales

 RANK is a calculation intensive formula that cannot multi thread. Used in conjunction with long timescales and/or a large
version list this can lead to poorly performing calculations. The same applies to RANKCUMULATE

https://community.anaplan.com/t5/Knowledge/Formula-Structure-for-Performance/ta-p/33177

 31

2.03 Line Items

2.03-01 Turn Summary options off by default

 Most line items in the model will not need summary calculations, so it is good practice to turn summaries off initially and add
then back when necessary. This is especially true for Calculation modules and conditional formatting line items

2.01-10 Calculation Modules

2.03-01a User facing modules on
dashboards

For Input or Output modules, specifically those line items displayed on Dashboards, summary options are likely to be needed

2.03-02 Try not to use TEXT as a format, or limit it as much as possible

 Anaplan (as with computers in general) is optimized for numbers and Booleans. Text formats use more memory than any other
format due to the way computers need to store the data. Minimise the use of text if possible

2.02-04 Text Strings

2.03-03 Headers

 Ensure headers are set to No Data to avoid unnecessary calculations

 32

2.04 Saved Views

2.04-01 Naming convention

 Give the view a meaningful name (e.g. Dashboard Grid, Filtered View, Export etc.) There is no need to add the module name
within the name of the view

Naming Convention

2.04-02 Filtering on views

 Filter on a Boolean and only have one filter per view

4.02-01 Use efficient filters

2.04-03 Keep the Default View clean

 Keep the default view as is, no hiding, filtering, or conditional formatting

2.04-04 Nested Views

 If possible, nest the dimensions in order of size (largest to smallest)

https://help.anaplan.com/anapedia/Content/Modeling/Good_Practice/Good_Practice_Naming_Conventions.html

 33

3 UX Principles
This section covers general design principles. They are broad UX guidelines that apply to all applications, but they have been tailored for Anaplan

3.01 Hierarchy of information

3.01-01 Principle

 Done well this makes the content easy to read. It creates a path for the viewer’s eye to follow through the page/screen

3.01-02 Tell a story

 Use a landing page to provide key summary information. This is useful as it orients new users around the model's contents,
provides a summary as well as navigation to more detailed pages

3.01-03 Summaries first

 Place summary information first within a category, with detailed data pages afterwards. Add instructions that guide and explain
what users are to do.

3.01-04 Order of importance

 Consider what’s most important, and place that at the top of the page, e.g. KPIs

 34

3.02 Smart Grouping

3.02-01 Gestalt Principle

 The mind tends to group items together to simplify input. Grouping your pages together visually helps the user to make sense
of what they’re seeing, and find what they’re looking for quicker

3.02-02 Contents page

 Split content up using categories in a way that makes sense to your users e.g. functional areas. Consider the story, and group
and order you pages accordingly

3.02-03 Group like content

 Group related and/or connected data together

3.03 Reduce Visual Load

3.03-01 Hick’s Principle

 Fewer items on a page enable faster decision making

 35

3.03-02 Summarize data

 When working on your landing pages, try to minimize or summarize the data on these pages and provide links through to more
detailed pages via the contents

3.01-03 Summaries first

3.03-03 Keep it clean

 Limit the use of color in charts and graphs, and keep the page as clean as possible

3.03-04 Split it up

 Consider using multiple pages instead of putting all elements on one

3.04 Progressive disclosure

3.04-01 Principle

 Present data in digestible chunks. start simple and expose complexity when needed and not before

3.04-02 Summary

 Rather than put everything on a page, provide key information and link to another page to provide users with more detail

3.03-02 Summarize data

 36

3.04-03 Detailed Analysis

 On detailed pages users can do more granular tasks, such as perform detailed analysis, and manipulate and edit the data.
Ideally, the driving grid of the page should represent a more detailed view of the previous page

3.04-04 Use Contents

 Use the contents panel to place links that are useful to navigate to and from the current page but aren’t necessary to see on
the same page

3.05 Use Consistency and Standards

3.05-01 Consistency is key

 Users should not have to wonder whether different words, situations, or actions mean the same thing. Use consistent forms
(e.g. images, naming, words) and colors to communicate

3.05-02 Naming convention

 Name the same elements across different pages with the same name, keep links to pages and target page names consistent, so
that users aren't confused when moving between pages

 37

3.05-03 Placement

 Use consistent placement of those elements, by placing the same information in the same spot across pages

3.05-04 Colors

 Use consistent colors for the same metrics shown in different places

3.06 Provide Help and Guidance

3.06-01 Guidance

 Provide users with easy access to help on how to use the model

3.06-02 Instructions

 Use text and instructions where possible, although keep it simple and don't overwhelm the user with verbose language

3.06-03 Tool Tips

 Use customizable tooltips to help describe the visualizations and give a user better information about what they’re seeing

 38

3.07 Use the correct data type

3.07-01 Grids of data

 Grids are best for presenting data when it's useful to see large sets of specific values and understand their meaning e.g. sales
figures against products and time. Grids shouldn't be used for visualising high-level trends or comparisons between sets of data

3.07-02 Line Charts

 Line charts are best for seeing trends over a continuous timeframe e.g. revenue by month. They're especially useful for
comparing multiple categories of data e.g. revenue of different products by month. Use contrasting colours so that users can
easily differentiate series. Display a legend to make it clear what each series means

Line Charts

3.07-03 Column Charts

 Column charts are great for comparing values across different line or list items e.g. FY actuals vs forecast. Column charts are
also useful for comparing items over time e.g. revenue by month

Column Charts

https://help.anaplan.com/anapedia/Content/Dashboards_and_Visualization/Charts/Chart_Types/Line_Charts.html
https://help.anaplan.com/anapedia/Content/Dashboards_and_Visualization/Charts/Chart_Types/Column_Charts.html

 39

3.07-04 Bar Charts

 Bar charts are great for comparing values across different line or list items e.g. FY actuals vs forecast. They shouldn't be used
for comparing values over time. Bar charts are sometimes preferable over column charts if data labels are too long to fit on the
X-axis

Bar Charts

3.07-05 Stacked Column/Bar Charts

 Stacked Column Charts are best used to display part-to-whole relationships with multiple series e.g. revenue split into margin
and expenses by time. Use contrasting colours so that users can easily differentiate stacked data

3.07-06 Pie Charts

 Pie charts are best to use when you are trying to compare parts of a whole. They do not show changes over time

Pie Charts

3.07-07 Funnel Charts

 Funnel charts are often used to represent stages in a sales process and show the amount of potential revenue for each stage.
This type of chart can also be useful in identifying potential problem areas in an organization's sales processes. A funnel chart is
similar to a stacked percent bar chart

Funnel Charts

https://help.anaplan.com/anapedia/Content/Dashboards_and_Visualization/Charts/Chart_Types/Bar_Charts.html
https://help.anaplan.com/anapedia/Content/Dashboards_and_Visualization/Charts/Chart_Types/Pie_Charts.html
https://help.anaplan.com/anapedia/Content/Dashboards_and_Visualization/Charts/Chart_Types/Funnel_Charts.html

 40

3.07-08 Timeline charts

 A timeline chart is an effective way to visualize a process using chronological order. Since details are displayed graphically,
important points in time can be easily seen and understood. They are often used for managing a project’s schedule, timeline
charts function as a sort of calendar of events within a specific period of time

Timeline Charts

3.07-09

Waterfall Charts

 A waterfall chart can be used for analytical purposes, especially for understanding or explaining the gradual transition in the
value of an entity which is subjected to an increase or decrease in value. Often, a waterfall chart is used to show changes in
revenue or profit between two time periods

Waterfall Charts

3.07-10 Combination Charts

 Combination charts are useful where you want to validate the relationship between two variables that have different
magnitudes and scales of measurement but are related in a meaningful way

Combination Charts

https://help.anaplan.com/anapedia/Content/Dashboards_and_Visualization/Charts/Chart_Types/Timeline_Charts.html
https://help.anaplan.com/anapedia/Content/Dashboards_and_Visualization/Charts/Chart_Types/Waterfall_Charts.html
https://help.anaplan.com/anapedia/Content/Dashboards_and_Visualization/Charts/Chart_Types/Combination_Chart.html

 41

3.08 Give users visibility into status

3.08-01 Provide Feedback

 Ideally, the pages should always keep users informed about what is going on, through appropriate feedback within reasonable
time. Being informed about the current status helps users decide what to do next in order to accomplish their goals, and figure
out if their actions were effective or if they made a mistake

3.09 Match with real world scenarios

3.09-01 Use familiar language

 Speak the users' language, with words, phrases and concepts familiar to the user

3.09-02 Consider the Business Process

 It may be helpful to map out the process. Then in Anaplan, follow the real-world conventions and follow the real-world process
when deciding which information to place where, so that it appears in a natural and logical order

 42

3.10 Check in with end uses frequently

3.10-01 During the design

 Put users at the heart of the design. Check in with them before to learn what their needs are and help define what and how
you build your instance

3.10-02 During the build

 Check in with them during your building process to ensure you are on the right track

3.10-03 After Go-live

 Check in after to make sure everything is working well for them

3.10-04 User Feedback

 Interview users for the initial check in, talk them through your ideas and pages during your building process. Afterwards, you
can interview them, or have them use the system and watch them as they do. See where they get stuck or are having troubles
and make adjustments to suit their needs

 43

4 UX Build
This section covers the specifics of Anaplan Dashboards

4.01 Dashboards

4.01-01 Back to front design

 At the beginning of the design process, take the user stories and the UX Principles. Start with the end in mind

Designing Dashboards

4.01-02 Avoid horizontal scrolling

 Try and avoid the screen scrolling horizontally. It is better to fix the grid and scroll within the grid

4.01-03 Consider the screen size of the end users

4.01-03 Consider the screen size of the end users

 Don't build based on your screen size. Consider the smallest size that users will be viewing the dashboard and build to that
size. You should change the screen resolution to double check how the dashboards will look for the end users

4.01-02 Avoid horizontal scrolling

https://community.anaplan.com/t5/Knowledge/Designing-Dashboards-General/ta-p/33562

 44

4.01-04 Add Page Selectors rather than module selectors

 Use separate page selectors rather than module page selectors, especially if the dimensions are repeated in multiple
dashboard elements

4.01-05 Turn off module page selectors

4.01-05 Turn off module page selectors

 Show the page selector is appropriate but try and drive the selection from a general page selector

4.01-04 Add Page Selectors rather than module selectors

4.01-06 Deep Level hierarchies

 Create a separate dashboard with selection modules to keep the main dashboards clean. This also allows for more efficiency
navigation up and down the hierarchy tree

4.01-07 Avoid buttons for Navigation

 Use the contents page for navigation rather than clutter the dashboards with buttons

4.01-07a Iterative processes When the user needs to toggle back and forth between dashboards, it is acceptable to have navigation buttons

4.01-08 Avoid Refresh buttons

 Educate the users to use the Refresh option in the toolbar rather than action "refresh" buttons to open dashboards

 45

4.01-09 Publish charts with full filters initially

 If the chart has a filtered axis, set the filter such that all items are shown, then publish the chart. Then set the filter criteria
back as desired; the chart will then respect the filter

4.01-10 Turn off the Module name

 Use dashboard text to describe the grid, rather than display technical module names

2.01-01 Naming Convention

4.01-10a Space Saving If screen space is at a premium, heading text can take up more space than desired, but do consider the overall user
experience and don't clutter up the dashboard

4.01-11 Publish Process Actions instead of Import/Export Actions

 Import and Export actions need to be republished if modified or replaced, whereas Process Actions are always consistent with
whatever is held within the Process, making management easier

5.01-02 User Facing Actions in a process

4.01-12 Avoid using Delete action buttons on dashboards for end users

 End users could potentially delete historical data, so keep the list element maintenance separate as part of the administration
process

4.01-11 Publish Process Actions instead of Import/Export Actions

 46

4.01-13 Store image URLs in a separate module

 Keep all of the image URLs for a list in a separate System module. Be mindful of the correct dimensionality

2.01-04 Use the DISCO methodology for Module design

4.01-14 Enable Personal Dashboards

 Use Personal Dashboards to enable users to personalise the views of the data

6.04-03 Master Dashboards

Personal Dashboards - Tips and Tricks

4.01-15 Limit modules with many formatted list line items

 Too many list formatted line items displayed on a dashboard can adversely affect performance. Try and limit the number of
displayed line items in a single module; split them into separate modules if necessary

4.02 Filters

4.02-01 Use efficient filters

 For most efficient performance resolve filters to a single Boolean condition for each axis

https://community.anaplan.com/t5/Knowledge/Personal-Dashboards-Tips-and-Tricks/ta-p/31740

 47

4.02-02 Keep Filters in separate modules

 Try and keep filters in separate System modules. They can then be reused for different modules

2.01-15 Filters in separate modules

4.02-03 Use time filters on all dashboards

 Do not use show/hide function for time; these are static. Using the Time Settings module makes the filtering dynamic when
the model calendar changes

2.01-07 Time Settings Module

4.02-04 Filter Selections in order of size

 If using multiple conditions in a filter, include the conditions in order of list size with numeric conditions last

4.02-05 Use User filters to provide dynamic reporting

 Create filter modules dimensioned by the users list to support dynamic filtering of module data

1.03-02 Performance and size can be dependent Users list

Increase end user adoption with smart filters

4.02-06 Avoid filtering on Nested Dimensions

 If possible, try and avoid filtering on nested dimensions. Try and pivot the view differently. If this is not possible, ensure the
filters are efficient

4.02-01 Use efficient filters

https://community.anaplan.com/t5/Knowledge/Increase-End-User-Adoption-with-Smart-Filters/tac-p/44769

 48

5 Integration
This section covers the various sections for Import, Exports and Data Hubs

5.01 Actions

5.01-01 Naming Convention

 Use numeric prefixes to signify the order within the process (e.g. 1.1 Import Products, 1.2 Import Product details). There is no
need to include the technical module name in the description

5.02-01 Naming Convention

Naming Convention

5.01-02 User Facing Actions in a process

 Import and Export actions need to be republished if modified or replaced, whereas Process Actions are always consistent with
whatever is held within the Process, making management easier.

4.01-11 Publish Process Actions instead of Import/Export Actions

5.01-02a Numbered list actions Actions involving numbered lists (Create, Assign, Copy Branch and Delete Branch) cannot be placed in a process

5.01-03 Keep User actions (in general) to a minimum

 Critically review the need for user driven actions, consider the effect on user concurrency. Attempt to use formulas instead.
This may need additional modules, but the user experience could be improved as a result

https://help.anaplan.com/anapedia/Content/Modeling/Good_Practice/Good_Practice_Naming_Conventions.html

 49

5.01-04 Delete one off actions

 For imports that are one offs, delete the import and data source

5.02 Processes

5.02-01 Naming Convention

 Use "friendly" names for user facing processes. For data hubs or administrative processes use numeric prefixes to signify the
order of the processes

5.01-01 Naming Convention

Naming Convention

5.02-02 Keep actions in a process to a minimum

 Each action in a process triggers a recalculation so try and minimise the number of actions

https://help.anaplan.com/anapedia/Content/Modeling/Good_Practice/Good_Practice_Naming_Conventions.html

 50

5.03 Source Models

5.03-01 Remove unwanted sources

 For one off imports, or when source models are no longer required, delete the source model to keep the list tidy

5.04 Imports

5.04-01 From source system, create a code defining all attributes

 Ideally, this would be a separate file that is unique vs. using the same file for the transactional load

5.04-02 Create separate files for attributes and data

5.04-01a Code is >60 characters If the code is >60 characters, you will have to use combination of properties

5.04-02 Create separate files for attributes and data

 The data file should have the key and values based on the dimensions. Non dimensional data should be in a different file

5.04-01 From source system, create a code defining all attributes

 51

5.04-03 Data or Time period should not be part of the unique row

 Consider what actually makes the row unique; include only attributes in the key, not data fields or dates

1.05-11 Do not embed Numeric values or Dates within the Code of a list

5.04-04 Only include the fields that are needed

 Use the Ignore field if there are any unwanted fields

5.04-05 Pre aggregate in the source

 Wherever possible, aggregations should be done in the source system. This is likely to reduce the size of the import file
meaning faster imports

5.04-06 Import the correct granularity

 Only imported data at the granularity needed. There is no need to bring in transactional data at a weekly level when Planning
happens at the month level

5.04-07 Import using the correct formats

 Line items holding the Imported line items should reflect the data. List formatted, numbers, and dates. Don’t use text (unless it
is a true text field)

 52

5.04-08 Never use a list as an import source

 Import sources should always be done from a module view. This allows for filtering and only including the elements required
for each import

5.04-08 Never use a list as an import source

5.04-09 Always use saved views as import sources

 Modules and saved views should be used as the source for other imports

5.04-10 Unify the date format

 Use a generic date format (e.g. YYYYMMDD) whenever possible to simplify the imports and remove the need for date
mismatches and manipulations

5.05 Exports

5.05-01 Naming Convention

 Keep it simple. Export, Build etc. There is no need to include the module name in the view name

Naming Convention

https://help.anaplan.com/anapedia/Content/Modeling/Good_Practice/Good_Practice_Naming_Conventions.html

 53

5.05-02 Only include what is needed

 Only include the line items that are required for the import. Create multiple views if the module is used for different imports.
The number of columns in the view does affect the speed of the import. The fewer the columns, the faster the import will be

5.05-03 Split views for List and Module imports

 Create two views from a source module. One for the import to the list (using name, code and parent), and show for the
attributes to the associated System module

5.05-02 Only include what is needed

5.05-04 Ensure view filters are optimised

 Only use one filter criteria...If more are needed, combine them into one line item

4.02-01 Use efficient filters

5.06 Import Data Sources

5.06-01 Naming Convention

 Rename the import sources as soon as possible. For a saved view include the module name (e.g. module.saved view). For
model imports, include a shorted version of the model name (e.g. model_module.saved view)

Naming Convention

https://help.anaplan.com/anapedia/Content/Modeling/Good_Practice/Good_Practice_Naming_Conventions.html

 54

5.06-02 Delete unwanted sources

 For one off imports, or when import sources are no longer required, delete the sources to keep the source list tidy

5.07 Data Hub

5.07-01 No Hierarchies

 There should be no need for composite list hierarchies in the Hub. They can be built to "test" the actions, but after testing they
should be deleted

5.07-01a Validation purposes If data is needed to be consolidated to check against source systems, although the flat modules with attributes can be used
to sum data

5.07-02 No Analytical modules

 Try and keep Analytical modules out of the Hub

5.07-03 Flat lists for data export

 Use the flat list structures to create modules and views for downstream exports

 55

5.07-04 Get the correct format

 Get the data from IT in the correct format as well as the correct granularity

5.04-06 Import the correct granularity

5.07-05 Use System modules

 Use System modules for filtering data (current period, current FY year, etc.)

5.07-06 Master data should be built by the source system

 Try and avoid creating Master Data in the hub. This should really come from the source system(s)

5.07-07 Keep Transactional Analysis out of the planning models

 Use the Data hub (or another reporting model) to keep detailed transactional data out of the main planning models, Large
amounts of historic transactional data can inflate the size of the planning model and lead to reduced performance

5.07-08 Pre aggregate for downstream exports

 It is more efficient to aggregate the data in the hub and then export it, rather than accumulate it through the import to the
downstream models

 56

5.07-09 Avoid using a Top Level for large lists of transaction data

 Don't create a transaction list with a top level. The calculations will need to sum for all items in the list even if only a single
item is added

5.07-10 Add intermediate sub totals to transaction lists

5.07-09a Check totals If a check total of all transactions is needed, but again using the flat attributes modules is preferable

5.07-10 Add intermediate sub totals to transaction lists

 If you need the totals for validation purposes, create intermediate subtotals within the transaction list. This will significantly
reduce the calculation load

5.07-09 Avoid using a Top Level for large lists of transaction data

 57

6 Application Lifecycle Management
This section covers the process of Application Lifecycle Management (ALM)

6.01 Revision Tags

6.01-01 Create a Naming standard

 Be consistent with how you name your revisions. It is advised to use a Major.Minor nomenclature (e.g. R1.01, R1.02, R2 etc.).
Remember, the description is permanent and cannot be changed - Be careful!

6.01-02 Create a Revision Tag at least once a day

 During periods of intense development, ensure that revision tags are created regularly and tested against a "shell" model

Revision Tag Best Practices

6.01-03 Revision documentation

 If you need a fuller description of revisions, create a normal list and then house the revision details in a module with other
fields such as Approved date User Story, Developer, Tested date, Sign off date etc.

Revision Tag Documentation

https://community.anaplan.com/t5/Knowledge/Revision-Tag-best-practices/ta-p/33596
https://community.anaplan.com/t5/Knowledge/Best-practices-for-revision-tag-documentation/ta-p/33597

 58

6.01-04 Synchronise Production regularly

 Minimise the risk of sync errors by synchronising regularly to keep Production and Development aligned

6.01-02 Create a Revision Tag at least once a day

6.01-05 Dummy Test Model

 Set up a "shell" model (using create from revision) that contains no production list members on which to test revisions and
synchronises regularly

6.01-02 Create a Revision Tag at least once a day

6.02 Production Lists

6.02-01 Define Production lists before the first sync

 Don't set all lists to production initially. Setting a list back to Structural (after a synchronise) will remove data from the existing
production list even if the members are the exact same

Prepare Applications for ALM

6.02-02 Formula protection - Hard coding

 You cannot hard code a reference to an item in a production list because that member may be deleted by an end user

Formula Protection

https://help.anaplan.com/anapedia/Content/ALM/Prepare_Existing_Models.html
https://help.anaplan.com/anapedia/Content/ALM/Model_Data/Formula_Reference_Protection.html

 59

6.02-03 Review the need for Production Lists

 Only lists that require amending as part of the business process, or where the lists are populated by imports should be set to
production lists

6.02-04 Don't click and hope

 Review the referenced by column of potential lists and check for hard coded formula references before checking them as
production so you don't generate rollbacks

6.02-02 Formula protection - Hard coding

6.03 Deployed Mode

6.03-01 Don't take the model out of deployed mode

 Once ALM has been initiated, and Deployed mode turn on, the Production model should NEVER be taken out of Deployed
mode

6.03-01a Development Model
creation

When copying a Production model to create the initial ALM environment, or when re-creating the DEV model as part of a
“reset”

6.03-01b There are no other
exceptions!

It is just not worth it. ALM brings control, but there are rules, and Deployed mode is the key rule

 60

6.03-02 Use deployed in Dev mode for additional security

 Setting deployed mode for Dev models is OK and can prevent inadvertent structural changes being made outside of normal
development cycles

6.03-03 Keep Test models in Deployed mode

 Test models should be treated as Production Models. This gives a true representation of testing and also prevents inadvertent
synchronises from Test to Prod

6.04 Managing changes during development

6.04-01 Back to the Future

 This is a technique that reverts the model back a revision state, allows you to make a fix, sync to Production, and then return
Development back to where it was

Saving incomplete changes during development

6.04-02 Switchover

 After a revision, create multiple revision tags with different switchover dates prior to starting new development

Managing Frequent Structural Changes During Development

https://community.anaplan.com/t5/Knowledge/Save-Incomplete-Changes-when-Synchronizing-in-ALM/ta-p/33595
https://community.anaplan.com/t5/Knowledge/Managing-Frequent-Structural-Changes-During-Development/ta-p/33594

 61

6.04-03 Master Dashboards

 Master Dashboards will delete any personal dashboards. Techniques to minimise user disruption include creating a copy and
have a migration process to move users to the new dashboards

4.01-14 Enable Personal Dashboards

Personal Dashboards - Tips and Tricks

6.05 Architecture

6.05-01 Make DEV the source for everything

 DEV> Test, and DEV>Prod is more flexible; it allows multiple Test models, and Test models to be created and deleted without
compromising Prod. It also supports segregation of duties

6.05-02 Archived Models

 Compatible models (DEV, TEST or PROD) can be archived without breaking the link between them

6.05-03 Model modes

6.05-03 Model modes

 When restoring Archived models, restore the model to Deployed mode if this is a Production or Test model

6.05-02 Archived Models

https://community.anaplan.com/t5/Knowledge/Personal-Dashboards-Tips-and-Tricks/ta-p/31740

 62

6.05-04 Keep the Development model small

 Keep the Development model as small as possible, Try and only use a selection of items in the production lists to minimise the
model size. Use the “create from revision” functionality as part of the set up

Prepare Applications for ALM

6.05-05 Use a Data hub to populate the Development Model

 Use saved views within the Data Hub to populate the Development model. This allows defined data and structures to be
imported to assist initial development and component testing

https://help.anaplan.com/anapedia/Content/ALM/Prepare_Existing_Models.html

	A Guidebook for Anaplan model building
	v2019.01
	Introduction
	Welcome to The Planual, the definitive guidebook for Anaplan modelling best practices. Over the last year we have consulted with employees, customers, partners, and Master Anaplanners to collect, evaluate, and define the techniques and structures that...
	In building these standards we considered three main aspects:
	Performance
	Usability
	Sustainability
	The standards (rules) contained in the Planual balance these three aspects to ensure the best outcome across the whole Anaplan user base—model builders and end users alike. We have tried to make the rules as general as possible. The Planual is not ab...
	Importantly, these rules are a guide, and there will inevitably be occasions that justify deviating from them. To accommodate these, we have included some of the known exceptions to the rules. However, we recommend that you follow the standards as mu...
	As with the Anaplan platform itself, this will be an evolving document. We will add to it and amend the rules as appropriate as new functionality gets delivered. Feedback is a gift and a core value at Anaplan. We want your feedback to make improveme...
	Finally, I would like to thank everyone who has helped in putting this together; without the creativity and collaboration of all who contributed, this would not have been possible.
	I hope you find the Planual useful, learn from it, and ultimately build the best Anaplan models for you and your users.
	Yours in modelling,
	David Smith: Vice President – Operational Excellence Group June 2019
	Introduction 3
	The Zen of Anaplan 7
	PLANS 8
	Planual Conventions 9
	1 Central Library 10
	1.01 Time 10
	1.02 Versions 12
	1.03 Users and Roles 13
	1.04 Contents 14
	1.05 Lists 15
	1.06 Subsets 18
	1.07 Line Item Subsets 19
	1.08 Emojis 20
	2 Engine 21
	2.01 Modules 21
	2.02 Formulas 26
	2.03 Line Items 31
	2.04 Saved Views 32
	3 UX Principles 33
	3.01 Hierarchy of information 33
	3.02 Smart Grouping 34
	3.03 Reduce Visual Load 34
	3.04 Progressive disclosure 35
	3.05 Use Consistency and Standards 36
	3.06 Provide Help and Guidance 37
	3.07 Use the correct data type 38
	3.08 Give users visibility into status 41
	3.09 Match with real world scenarios 41
	3.10 Check in with end uses frequently 42
	4 UX Build 43
	4.01 Dashboards 43
	4.02 Filters 46
	5 Integration 48
	5.01 Actions 48
	5.02 Processes 49
	5.03 Source Models 50
	5.04 Imports 50
	5.05 Exports 52
	5.06 Import Data Sources 53
	5.07 Data Hub 54
	6 Application Lifecycle Management 57
	6.01 Revision Tags 57
	6.02 Production Lists 58
	6.03 Deployed Mode 59
	6.04 Managing changes during development 60
	6.05 Architecture 61
	PLANS
	PLANS is set of rules that aim to help structure and design Anaplan models. Together, they clarify good model design for all users—individual Anaplanners, teams, and anyone handing models over to others.
	PLANS stands for:

	Planual Conventions
	The Planual is organised by Articles, Chapters, Rules and associated Exceptions.

	1 Central Library
	This section describes the rules for the Anaplan Central Library. The Central Library is where we hold and create the structures or dimensions of the model.
	1.01 Time
	1.02 Versions
	1.03 Users and Roles
	1.04 Contents
	1.05 Lists
	1.06 Subsets
	1.07 Line Item Subsets
	1.08 Emojis

	2 Engine
	This section describes the rules around the Anaplan Engine. At the heart of Anaplan is the Hyperblock in-memory engine which combines the cell-based flexibility of a spreadsheet, the scalability and querying capabilities of relational databases as wel...
	2.01 Modules
	2.02 Formulas
	2.03 Line Items
	2.04 Saved Views

	3 UX Principles
	This section covers general design principles. They are broad UX guidelines that apply to all applications, but they have been tailored for Anaplan
	3.01 Hierarchy of information
	3.02 Smart Grouping
	3.03 Reduce Visual Load
	3.04 Progressive disclosure
	3.05 Use Consistency and Standards
	3.06 Provide Help and Guidance
	3.07 Use the correct data type
	3.08 Give users visibility into status
	3.09 Match with real world scenarios
	3.10 Check in with end uses frequently

	4 UX Build
	This section covers the specifics of Anaplan Dashboards
	4.01 Dashboards
	4.02 Filters

	5 Integration
	This section covers the various sections for Import, Exports and Data Hubs
	5.01 Actions
	5.02 Processes
	5.03 Source Models
	5.04 Imports
	5.05 Exports
	5.06 Import Data Sources
	5.07 Data Hub

	6 Application Lifecycle Management
	This section covers the process of Application Lifecycle Management (ALM)
	6.01 Revision Tags
	6.02 Production Lists
	6.03 Deployed Mode
	6.04 Managing changes during development
	6.05 Architecture

