
1

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Model Building in

Polaris: A Deeper Dive
Updated October 2025

2

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Anaplan Polaris is our next-generation calculation

engine.

Designed from the ground up for fast, highly

dimensioned calculation at scale, Polaris represents a

paradigm shift in your ability to model business

planning challenges without compromise.

You can achieve significantly greater granularity of

planning for more detailed decision-making with

Polaris.

3

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

This deck is part of a series on Polaris best

practices and includes a deep dive of some

previously discussed topics, as well as new

content.

Click here for more Community content or

visit Anapedia for detailed technical guidance.

https://community.anaplan.com/categories/best-practices?tagID=713
https://help.anaplan.com/polaris-calculation-engine-8b466778-42b2-4e35-b318-e5e4128b63b7

4

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

21

65

43

Topics Covered

Calculation Complexity

Guards and Inline Conditions

Blueprint Insights: Better TogetherIterative Development

Inserting List Members

Calculation Effort

5

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

5

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Iterative Development

6

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

An introduction to Iterative Development in Polaris
Polaris allows large-scale modeling, requiring phased validation to stay performant and manageable

What does it look like?

What is iterative

development? Why does it matter?

Iterative development is

separating syntax validation

from performance validation.

It means building and unit

testing in one environment,

evaluating scalability and

performance in another, and

iterating between the two

throughout.

This development approach

helps you build correct and

performant models, while

maintaining model builder

productivity.

Following this approach using

Anaplan’s Application Lifecycle

Management (ALM)

establishes deployment

discipline from the start.

There are four main steps:

1. Quick feedback, fast

development

2. Create a TEST model with

fully populated lists (don't

forget to put it in deployed

mode!)

3. Start introducing data

4. Reality check with a full-

scale test model

Read this 5-minute article for a closer look at iterative development.

https://community.anaplan.com/discussion/160471/iterative-development-in-polaris/p1
https://community.anaplan.com/discussion/160471/iterative-development-in-polaris/p1
https://community.anaplan.com/discussion/160471/iterative-development-in-polaris/p1

7

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

7

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Blueprint Insights: Better Together

8

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Getting the most out of Blueprint Insights
Blueprint Insights can and should be used together to provide a holistic view into optimization opportunities

Calculation Complexity

Gain insight into which line

items can be optimized,
helping you prioritize where

to focus efforts to drive

formula efficiency and
model performance.

Shows the effect of formulas in

calculating cells

Calculation Effort

Displays the percentage of computational

effort required for each line item

Populated Cell Count

Tells the size of the populated space - the

cells that have non-default values

Cell Count

Shows the total size of the multi-dimensional

space (the potentially addressable space)

9

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Prioritizing Optimization Opportunities
Review the below guidelines for prioritizing which formulas to optimize in a Polaris model. Then explore the

remaining content for more detail about Calculation Complexity, Calculation Effort, and Using Guards
Effectively to Optimize Calculations.

1 Focus first on high Calculation Effort line items that also have high Calculation Complexity. These line

items have the most room for improvement.

2 Focus next on line items with high Calculation Effort overall, especially if they use known single-threaded

functions like ISFIRSTOCCURRENCE, RANK, RANKCUMULATE, and CUMULATE.

3
Focus next on high Calculation Complexity line items that also have high Cell Count. Even if they have

a small Populated Cell Count and Calculation Effort, they have the potential to cause performance issues if

the addressable Cell Count and Complexity is high.

4 Finally, focus on line items with Calculation Complexities that equal ‘All Cells’ in line items with high

cell counts as they may pose a risk due to their inherent fully dense nature.

10

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

10

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Calculation Complexity

11

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

The Calculation Complexity column shows the effect of your formula in

calculating cells

One-to-One One-to-Many All cells

Only calculates results for

cells that contain a non-
default value

Therefore, the number of
cells calculated in the result

is the same as non-default

values in the source

Calculates results for a

greater number of cells than
make up the source data

The multiplier, or ratio, is a
measure of how much work

the engine must do relative to

the number of populated cells
in the source – the higher this

is, the less efficient the
formula will be

Calculates results for all cells

within the dimensionality of
the line item

Every cell in the result
requires calculation, even

those that were originally

blank or evaluated to be zero

Formulas should be designed to preserve sparsity to drive memory-efficient models

Most efficient Least efficient

12

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

‘One-to-One’ Calculation Complexity: An example
In this example, the Margin calculation is driven by the Revenue value and influenced by the Cost

value, representing a one-to-one relationship. The one-to-one calculation complexity means one cell is
calculated and potentially populated for each non-default value in the source.

One-to-one calculations are common, but there are other types of

math, such as allocations, that do not follow this pattern.

13

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

‘One-to-Many’ Calculation Complexity: An example
The One-to-Many calculation arises when math is performed that differs dimensionally from the source

data or involves allocations. The below example looks at the target by salesperson and explores two
ways to write the formula.

Each line item results in the target by salesperson, but the formula

is written two different ways.

CONSIDER: What do you notice about the cell counts, memory,

complexity, and effort for each line item? Why might this be?

Note: The parenthetical after “One-to-
Many” contains the potential of number

of values calculated and populated for

each non-default source value.

14

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

‘One-to-Many’ Calculation Complexity: An example (continued)
The initial (top) formula results in 307 potential values for every non-default value feeding it. By

introducing a guard to the formula, in this case the ‘IF’ statement, the second (bottom) formula results in
a complexity of 12, optimizing formula efficiency and reducing unnecessary calculations.

Cell Count: 210,800

Populated Cell Count: 57,409

Memory Used: 1.2 MB

Calculation Complexity: One-to-Many (307)

Calculation Effort: 97.4%

Cell Count: 210,800

Populated Cell Count: 442

Memory Used: 35 kB

Calculation Complexity: One-to-Many (12)

Calculation Effort: 02.60%

BEST PRACTICE: To optimize formula efficiency and reduce unnecessary calculations,

minimize the use of One-to-Many calculations by reviewing the differing dimensionality, and/or
using guards to lower the complexity factor (see "Guards" section for more detail).

15

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

‘All cells’ Calculation Complexity: An example
In this example, a Boolean is used where the formula consists of the value TRUE, which applies to all

cells. When dealing with a substantial number of cells, the ‘All cells’ approach can negatively impact
performance as the engine must calculate the value for each cell individually.

Note: Cell Count is the important insight
to focus on here. A formula resulting in

'All Cells' in a line item with a large cell

count should be avoided.

BEST PRACTICE: Avoid the ‘All cells’ approach in scenarios involving a

substantial number of cells where performance is critical.

16

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Watch this 5-minute video for a deep

dive on Calculation Complexity.

https://video.anaplan.com/watch/RnV7hZCfv9hxhLVsYpNvYY

17

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

17

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Calculation Effort

18

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

How to determine which line items to optimize?
Blueprint Insights contain valuable information about line items, such as Calculation Effort. When

reviewed together, Blueprint Insights can provide valuable information so you can focus on optimizing
the line items that will have the greatest impact on performance.

CONSIDER: Of the line

items shown, which
Blueprint Insights stand
out? Which line items

might have the greatest
opportunity for

optimization?

19

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Use Calculation Effort with Calculation Complexity to optimize formulas
Calculation Effort and Calculation Complexity are Blueprint Insights contained within the blueprint view

of a module (or the line items tab) in Polaris. Calculation effort displays the percentage of computational
effort for each line item over the last ten minutes and responds to formula changes or user inputs.

HOW TO REFRESH CALCULATION

EFFORT:

1. Full Model Refresh: close and reopen

the model.

2. Targeted Update: allow model to remain

idle for 10 minutes, then run the import

actions or perform the user inputs. The

Calculation Effort column on the line

items affected will be updated.

UNSURE HOW TO PRIORITIZE WHICH

LINE ITEMS TO OPTIMIZE?

Check out this slide for guidance on how

to prioritize based on Blueprint Insights.

20

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Read this 5-minute article for more

information on Calculation Effort.

https://community.anaplan.com/discussion/160720/anaplan-polaris-calculation-effort

21

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

21

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Using Guards Effectively

22

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

What is a “guard”?

A “guard” refers to an IF THEN statement used in a formula with conditions to tell the Polaris engine

when to calculate. When used appropriately, guards will tell the engine when to calculate and when to
skip, which contributes to a more performant model.

POLARIS IGNORES DEFAULTS

Polaris is already designed to minimize unnecessary

calculations by skipping the default values of zero,

blank and false, but it can only act on what it

inherently knows.

When using guards to drive calculation efficiency, it’s not as simple as just adding an IF THEN statement to formulas.

Thoughtful consideration about how and when to use guards is required.

23

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Validation Modules: A tool for effective guards
A validation module is a small, targeted module that indicates intersections, such as which combinations

of products and accounts, where a calculation should be performed.

VALIDATION MODULE

Contains the Boolean formatted line item

‘Valid?’ to indicate which combinations of

products and accounts warrant a calculation,
in this example the Growth Rate %, should be

performed

INCORPORATING THE VALIDATION

MODULE INTO A GUARD

The Growth Rate % formula has been

updated to include an IF THEN ELSE
statement that references the validation

module. The calculation will only be performed
for Product/Account combination where the

Boolean is TRUE.
Using a guard greatly improves the Populated Cell

Count, Memory Used, Calculation Complexity, and

Calculation Effort.

24

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

All guards are not created equal
Thoughtful consideration should be used when deciding when to use a guard. Guards are not always

recommended or required, and they can inadvertently “reverse” the sparsity of a line item.

UNNECESSARY GUARDS

Some guards are redundant and add no

performance benefit. In the Classic

Anaplan engine, model builders often

check for zeroes (a “<> 0” guard) to

enable an early exit in IF statements.

However, this isn’t required in Polaris

since the engine inherently ignores zero

values.

REVERSING SPARSITY

Formulas that result in a value for many or

most cells can result in high density and

poor performance at high dimensionality.

Examples include formulas with guards

ending in “… ELSE X + 1” or “… ELSE

TRUE”.
CONSIDER: If all variables feeding this formula are zero (or blank or FALSE),

what’s the result? If the answer is something other than zero, blank, or FALSE,

then you should rethink your logic.

NOTICE: The results are identical between these line items, meaning the

IF/THEN portion is not needed.

25

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

For more detail, read this 5-minute

article for information on Applying

Formula Guards to Optimize

Calculations.

https://community.anaplan.com/discussion/160808/anaplan-polaris-applying-formula-guards-to-optimize-calculations
https://community.anaplan.com/discussion/160808/anaplan-polaris-applying-formula-guards-to-optimize-calculations
https://community.anaplan.com/discussion/160808/anaplan-polaris-applying-formula-guards-to-optimize-calculations

26

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

26

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Inline Conditions

27

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

What is an “inline condition”?
An “inline condition” refers to a formula condition that is written in the formula itself to reduce calculation

effort.

SPLITTING SUB-EXPRESSIONS VS. USING INLINE CONDITIONS

Splitting sub-expressions into separate line items allows them to be shared, which can be beneficial for performance and

maintenance. However, this forces the engine to perform a full calculation that may not be needed.

Since Polaris evaluates the entire formula to determine the most efficient calculation path, inline conditions can be used to reduce

calculation effort. This becomes increasingly important as model dimensionality grows.

The key to
understanding

inline conditions is

understanding a

“cross” or “cross

product”, which
enumerates all the

possible

interactions of 2 or

more things that

aren’t actually
related.

• Line Item: Is Weekday =
TRUE for days of the week

• Line Item: Speaks English =

TRUE for countries whose
primary language is English

Another line item, Is Included, is
added. This line item is a “cross”.

28

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Using inline conditions vs. splitting out sub-expressions

Because Is Included is a separate line item, the engine is forced to calculate every cell in that line item.

However, if we are using Is Included in another line item called Target, we can put the conditions from
Is Included directly inline in the formula for Target to take advantage of Polaris ignoring defaults.

Units Sold (Zeros shown as blanks)Target = IF Is Weekday AND Speaks English THEN Units Sold ELSE 0

The engine will only calculate Target for intersections where Units Sold, Is Weekday and Speaks English are all non-

default, which is a much more efficient approach than calculating Is Included independently for all cells. However, this
requires that the conditions for Is Included are used inline when calculating Target.

29

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Using inline conditions vs. splitting out sub-expressions (Continued)
The engine can only take the more efficient approach if the formula for Is Included is used inline when

calculating Target. If it’s instead its own line item, then the engine must calculate every combination.

SO WHAT?

This example illustrates that, when deciding whether to use inline conditions or split sub-expressions into separate

line items, you should look at Calculation Complexity. If you attempt to split out sub-expressions and…

• Calculation Complexity of the new line item is much higher, then you should use inline conditions,

• But if the calculation complexity is the same or less, then it’s ok to split out into separate line items.

30

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

For more detail, read this 5-minute article

for information on Optimizing

Performance Using Inline Conditions.

https://community.anaplan.com/discussion/160735/anaplan-polaris-optimizing-calculation-performance-using-inline-conditions/p1
https://community.anaplan.com/discussion/160735/anaplan-polaris-optimizing-calculation-performance-using-inline-conditions/p1

31

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

31

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Inserting List Members

32

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Manage Impact to Performance When Adding New Dimension Members
Adding new dimension members to a list will cause a full recalculation of any module containing that list,

which at high dimensionality in Polaris can be substantial. One approach to reducing impact on
performance is to activate pre-existing dimension members using in cell data instead.

TIP 1: REVEAL NEW DIMENSION MEMBERS INDIVIDUALLY

Changing the value of a cell only recalculates formulas that refer to that cell. Use a Boolean as a filter to activate new members so

the only recalculation happening is for the filter.

Existing Products

New Products

Data write

action to

activate

new items

33

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Manage Impact to Performance When Adding New Dimension Members
It's important to include empty, inactive list members within parent levels by default as changing a list

item's parent will also cause a full module recalculation.

TIP 2: ADD EMPTY, INACTIVE LIST MEMBERS IN ADVANCE

Anticipate where new dimension members may be needed by

including empty, inactive list members in each parent level by

default. These items won’t show up in reports or impact calculations,
but they will be readily available for use without causing a full

recalculation of modules that contain that list.

REMINDER: AVOID PEAK HOURS

Major metadata additions should be performed in bulk during off hours to keep the model performance optimal during day-to-day use.

34

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Watch this 5-minute video for an

example of Inserting List Members.

https://video.anaplan.com/watch/yGb6q55BmspLJpMHr66eRa

35

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

35

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Tabular Multiple Column Export

36

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

What is Tabular Multiple Column Export?
A more performant layout option for large exports that offers flexibility for future export maintenance,

available in both Polaris and Classic

Leveraging the Tabular Multiple Column Export becomes even more important

with Polaris, where datasets can be exponentially larger.

37

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Available settings when using Tabular Multiple Column Export
After switching the layout to Tabular Multiple Column, additional options will become available that can

be applied to the export and saved within the export action

Omit Summary Items rather than using

show/hide in the underlying module view for
summary levels

Apply a filter within the action instead of

within the module view

Save Export Definition saves all settings

in the export action instead of within the
module view, allowing easy updates in the

future from the Actions pane

38

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Considerations when using a Tabular Multiple Column Export
When using the Tabular Multiple Column layout, it’s important to consider what’s included in the file and

the file size, and if needed, leverage options to achieve the desired output

Only the rows where the export Boolean is true

are included – the action is more flexible, with
additional filters applied in the future as needed.

Tabular Multiple Column will export all line items

within the module. If this isn’t the desired
behavior, create a separate model with only the

necessary line items, as well as a separate

module housing the export Boolean.

If the file size is large, use a separate filter

module to keep the file size down.

39

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Watch this 3-minute video for an

example of Tabular Multiple Column

Export.

https://video.anaplan.com/watch/UCPwPpjoA4JfpaTgZLL35v
https://video.anaplan.com/watch/UCPwPpjoA4JfpaTgZLL35v

40

A
n

a
p

la
n

 C
o
n

fi
d
e

n
ti
a

l

Be the Next.
END PHASE 1

	Introduction
	Slide 1: Model Building in Polaris: A Deeper Dive
	Slide 2
	Slide 3
	Slide 4: Topics Covered

	High-Level Topics
	Slide 5: Iterative Development
	Slide 6: An introduction to Iterative Development in Polaris
	Slide 7: Blueprint Insights: Better Together
	Slide 8: Getting the most out of Blueprint Insights
	Slide 9: Prioritizing Optimization Opportunities

	Optimizing Formulas
	Slide 10: Calculation Complexity
	Slide 11: The Calculation Complexity column shows the effect of your formula in calculating cells
	Slide 12: ‘One-to-One’ Calculation Complexity: An example
	Slide 13: ‘One-to-Many’ Calculation Complexity: An example
	Slide 14: ‘One-to-Many’ Calculation Complexity: An example (continued)
	Slide 15: ‘All cells’ Calculation Complexity: An example
	Slide 16
	Slide 17: Calculation Effort
	Slide 18: How to determine which line items to optimize?
	Slide 19: Use Calculation Effort with Calculation Complexity to optimize formulas
	Slide 20
	Slide 21: Using Guards Effectively
	Slide 22: What is a “guard”?
	Slide 23: Validation Modules: A tool for effective guards
	Slide 24: All guards are not created equal
	Slide 25
	Slide 26: Inline Conditions
	Slide 27: What is an “inline condition”?
	Slide 28: Using inline conditions vs. splitting out sub-expressions
	Slide 29: Using inline conditions vs. splitting out sub-expressions (Continued)
	Slide 30

	Other Optimization
	Slide 31: Inserting List Members
	Slide 32: Manage Impact to Performance When Adding New Dimension Members
	Slide 33: Manage Impact to Performance When Adding New Dimension Members
	Slide 34

	Bonus Scenes
	Slide 35: Tabular Multiple Column Export
	Slide 36: What is Tabular Multiple Column Export?
	Slide 37: Available settings when using Tabular Multiple Column Export
	Slide 38: Considerations when using a Tabular Multiple Column Export
	Slide 39
	Slide 40: END PHASE 1

