

info@lionpointgroup.com

http://lionpointgroup.com/

https://www.linkedin.com/company/lionpoint-group/

Anaplan Performance Series Part I:
Calculation Structure and Performance Taxonomy

The goal of this article series is to give advanced Anaplan model builders and architects insight into how
Anaplan works, along with actionable methods for improving model performance. In this post we discuss
calculation structure, beginning with the introduction of blocks. We also introduce a new taxonomy for
model performance. In the second & third article, we will look at how best to reduce the number of
calculations in the model. The fourth & fifth article will focus on how to achieve optimal
calculation efficiency.

Performance Overview

A large amount of performance decisions must be made on a case by case basis. This can make it difficult to diagnose the proper
solution to a poorly performing model. For that reason, this article will first try to explain how the Anaplan engine calculates
information, followed by examples and applications.

Anaplan Structure

Line Items

The first thing to know when understanding Anaplan’s architecture is that all calculations are done at the line item level. The
result of this is a chain of dependencies from an output line item all the way to its source. A modules primary purpose is for the
grouping of line items to enhance dashboard visualization, model cleanliness, and Imports/Exports. This means that when it
comes to considerations of dimensionality in regards to performance, we are interested in line items as opposed to modules.

Blocks

In order to maximize calculation efficiency, Anaplan breaks all data into blocks. These blocks are made up of the dimensions of a
line item, and each block cannot have any internal dependencies. This concept is what makes Anaplan far superior to Excel from
a calculation standpoint. Where every cell in Excel needs to potentially refer to every other cell, Anaplan groups its calculations
into blocks allowing faster computation by orders of magnitude. Let’s look at an example.

Region Product Channel

City L3 SKU L2 Channel L1

Country L2 Product L1 All Channels

Region L1 All Products

All Regions

Griffin Knight

Copyright 2020 Lionpoint Group

info@lionpointgroup.com

March 20, 2020

mailto:info@lionpointgroup.com
http://lionpointgroup.com/
https://www.linkedin.com/company/lionpoint-group/

Anaplan Performance Series Part I: Calculation Structure and Performance Taxonomy
Copyright 2020 Lionpoint Group
March 20, 2020

 2 of 4

The above graphic is a visual representation of a line item. In this case it is dimensioned by 3 lists: City L3, SKU L2, and Channel
L1. However, each of these lists has one or more parent hierarchies, which contribute to the block count. To count the number
of blocks in a line item you find the product of the base dimensions plus the number of parents.

∏(1+ 𝑖)

𝑑

𝑖=𝑝

d = Dimensions

p = # of Parents

Looking at our three dimensions, City L3 has 3 parents, SKU L2 has 2 parents, and Channel L1 has 1 parent. Applying this to the
formula above we get:

𝑑 = 3, 𝑝1 = 3, 𝑝2 = 2, 𝑝3 = 1

(1 + 3)(1 + 2)(1 + 1)

(4)(3)(2) = 24

If you were to count the number of blocks in the graphic above, it will equal 24. However, 23 of the 24 blocks are summaries, if
summary methods were turned off, this line item would only have 1 block: (1 + 0) * (1 + 0) * (1 + 0).

Time & Versions

You may have noticed that Time and Versions act differently than other dimensions. For example you cannot SUM across them
and a line item can reference itself through PREVIOUS() or NEXTVERSION(). But a line item without time or versions can never
reference itself, what gives?

The answer is that every member of Time and Versions is treated as a separate block. One way to think about this is that each
Time member (or Version) can be thought of as its own Line Item. Let’s look at an example.

Anaplan Performance Series Part I: Calculation Structure and Performance Taxonomy
Copyright 2020 Lionpoint Group
March 20, 2020

 3 of 4

The above line item is dimensioned by Region L1, and Channel L1, each with 1 parent. If Time was not a dimension this line item
would have 4 blocks (1+1) * (1+1). However, with 10 periods of time, this module now has 40 blocks 4 * 10. This flexibility can
come with a cost though, as we will see later. We can now revise our formula to account for Time and Versions.

(∏(1 + 𝑖)

𝑑

𝑖=𝑝

)(𝑇)(𝑉)

Taxonomy

There are two components I think about when breaking down the performance of a model. One way to think about this is in the
formula below.

Count x Efficiency = Performance

Note that it is much more nuanced than this, however, we believe it's an important first step to understanding how to make a
model perform better. In general, a smaller model will tend to perform better than a large one, just as efficient calculations will
perform better than non-efficient ones.

Additionally, calculations can be broken down into two pieces: inter-block and intra-block. The inter-block portion of a
calculation is one that deals with other blocks (dimension intersections). The intra-block side deals with the calculations of cells
within a block. Combining this with the calculation above we get a grid that we believe applies a solid taxonomy to breaking
down model performance.

 Number of Calculations Efficiency of Calculations

Inter-block The number of blocks within a line item, or across
line items.

Reducing the blocks you have.

The efficiency of block to block interactions

Optimizing the blocks you have.

Intra-block The number of cells within a block.

Reducing the cells you have.

The efficiency of calculations across cells in a block

Optimizing the cells you have.

Anaplan Performance Series Part I: Calculation Structure and Performance Taxonomy
Copyright 2020 Lionpoint Group
March 20, 2020

 4 of 4

Here are some examples of performance considerations within each quadrant.

 Number of Calculations Efficiency of Calculations

Inter-block ▪ Line Item Summaries

▪ Reduce Dependencies

▪ Time Ranges

▪ Non-Common Dimensions

▪ Calculation Sequence

▪ Selective Aggregation

▪ Dimension Order

Intra-block ▪ Extra Dimensionality

▪ Subsets

▪ Format Types

▪ Early Exits

▪ Formula Repetition

It is important to note that many of these items can arguably be placed in a number of these quadrants. However understanding
the different “dimensions” of Anaplan performance through a structured taxonomy can assist in a model builders’ ability to
diagnose and/or prevent the performance issues within a model.

In our next article, we will go into the upper-left side of the chart, discussing the inter-block considerations in regards to the
number of calculations in a model.

info@lionpointgroup.com

http://lionpointgroup.com/

https://www.linkedin.com/company/lionpoint-group/

Anaplan Performance Series Part II: Inter-Block Number of Calculations

In Part I we discussed how Anaplan structures its data along with a new taxonomy for looking at
performance considerations. In this article we will go into the ways in which we can reduce the number of
blocks within a model.

 Number of Calculations Efficiency of Calculations

Inter-block The number of blocks within a line item, or across
line items.

Reducing the blocks you have.

▪ Line Item Summaries

▪ Reduce Dependencies

▪ Time Ranges

The efficiency of block to block interactions

Optimizing the blocks you have.

▪ Non-Common Dimensions

▪ Calculation Sequence

▪ Selective Aggregation

▪ Dimension Order

Intra-block The number of cells within a block.

Reducing the cells you have.

▪ Extra Dimensionality

▪ Subsets

The efficiency of calculations across cells in a block

Optimizing the cells you have.

▪ Format Types

▪ Early Exits

▪ Formula Repetition

Inter-block, Number of Calculations

Reducing the number of calculations in an Anaplan model is a simple and effective way to improve performance and reduce size.
Reducing the number of calculations from an inter-block perspective means reducing the number of blocks within the model.
The ways that this can be done is through line item summaries, reducing dependencies, and utilization of Time Ranges.

Line Item Summaries https://help.anaplan.com/anapedia/Content/Modeling/Build%20Models/Summary_Methods.html

For number formatted cells, Anaplan turns Summaries on by default. Therefore, if the model builder is going quickly, or doesn’t
realize the potential impact, there can be a lot of useless blocks in the model. It is also important to note that the type of line
item summary also can affect performance. For example, a summary method of Sum is much easier to calculate than a summary
of Formula.

Let’s go back to our example before when we introduced the concept of blocks. One line item dimensioned by 3 dimensions
each with parents, has 24 blocks with summary methods turned on. By simply turning the summary method to “None” it drops
to 1 block.

Griffin Knight

Copyright 2020 Lionpoint Group

info@lionpointgroup.com

March 20, 2020

mailto:info@lionpointgroup.com
http://lionpointgroup.com/
https://www.linkedin.com/company/lionpoint-group/
https://help.anaplan.com/anapedia/Content/Modeling/Build%20Models/Summary_Methods.html

Anaplan Performance Series Part II: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 2 of 5

Region Product Channel

City L3 SKU L2 Channel L1

Country L2 Product L1 All channels

Region L1 All products

All regions

As a general rule of thumb, the only time line item summaries need to be turned on is if (1) the module is on a dashboard in
which the value of the parent need to be shown or (2) it is needed for fringe calculation purposes.

But how are we supposed to aggregate the child amounts without using the summary? The answer is that you can use an
aggregation calculation instead.
https://help.anaplan.com/anapedia/Content/Calculation_Functions/CF_Aggregation_Functions.html)

Above, we have an example of aggregation using summary methods. While this method is quick and easy, it leads to
unnecessary blocks if the module is not used on a dashboard. Below we see an example of how we achieve the same result but
by using [SUM:], with summaries turned off.

https://help.anaplan.com/anapedia/Content/Calculation_Functions/CF_Aggregation_Functions.html

Anaplan Performance Series Part II: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 3 of 5

Using an Aggregation function leads to the same result, but without the excess blocks created from the summary method. Note
that the Line items we are summing off of (‘Summary Reduction Source’.‘Parent Region’ and ‘Summary Reduction
Source’.‘Parent Product’) are just PARENT(ITEM()) of the City and Widget dimensions, respectively.

David Smith goes into this concept in the first part of his article on reduction of calculations:
https://community.anaplan.com/t5/Best-Practices/Reduce-Calculations-for-Better-Performance/ta-p/33667

Reduce Dependencies

While Summary Methods was concerned with reducing the number of blocks within a line item, reducing dependencies can be
an effective way to reduce the number of line items (and in turn blocks) in your model.

When a line item references another, it forms a dependency on the line item it is referencing. Below is an example of three-line
items that are daisy chained together.

As we can see, line item C is dependent on B, which is dependent on A. While this is a basic example, we can see that since there
is no change occurring with B, C can instead reference directly to A.

https://community.anaplan.com/t5/Best-Practices/Reduce-Calculations-for-Better-Performance/ta-p/33667

Anaplan Performance Series Part II: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 4 of 5

Note that in practice these line items would probably exist in different modules, making them more difficult to spot.

You may have noticed that we haven't actually reduced the number of blocks yet (I will go into the impact of just reducing
dependencies in the calculation sequence section in Part IV). The ability to dispose of unused blocks comes after we have
removed the dependencies. In our example above, why do we need both B & C? They both are referencing A so can’t we just
use A? If that is the case, we can delete B, C, or both. Deleting these line Items will reduce the number of blocks.

Let’s look at another example that we commonly see in models. Let’s say we have two modules, each with the same dimensions.
Module 1 is the raw data module, with Module 2 being used for calculations. Many times, we see people recreate the line items
from Module 1 in Module 2 with no calculations applied. The calculation line items then reference the “copied” line item in
Module 2. While this may make it easier to think through calculations, in reality it is a wasted line item because all of the
calculations can instead refer directly to the source line item in Module 1. Below is a graphic explaining this.

As you can see, line item B was essentially useless, and deleting it allows line item C to directly reference line item A.

Another example of this is Filters. Many modelers put a new filtering line item in each module that they want to filter. However,
if the dimensions are the same, you can utilize the same filter across as many modules as you want. This has the benefit of not
only reducing the number of blocks, but also allowing all filters to be controlled by one line item, making it much easier to apply
changes to filters across the model. This same concept can apply to Conditional Formatting line items in different modules.

The entire concept of reducing dependencies has to do with the common maxim: “Calculate once, reference many times”. This
means that if a line item is not uniquely changing the referenced line, we don’t need it. This will lead to the leanest model
possible with only essential line items. We will caveat this with the fact that sometimes performance rules need to be broken for
optimal dashboarding, however the impact is usually low.

Time Ranges & Versions (https://help.anaplan.com/anapedia/Content/Modeling/Dimensions/Time%20Ranges.htm)

Module 1

Line i tem A: Raw data

Module 2

Line i tem B: ‘Module 1’ ‘Line Item A’

Line i tem C: ‘Line Item B’/ 12

Module 1

Line i tem A: Raw data

Module 2

Line i tem C: ‘Line Item A’/ 12

https://help.anaplan.com/anapedia/Content/Modeling/Dimensions/Time%20Ranges.htm

Anaplan Performance Series Part II: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 5 of 5

As we learned before, each individual time period and version is treated as its own block. Therefore, we should be extra diligent
about only including as many time periods and versions as necessary.

When it comes to Time, the entirety of the model time scale often is not necessary. This is especially true in models with very
long time periods set. By utilizing time ranges you can set your time range to only include periods that are applicable to your
calculations, hence reducing blocks.

Other ways to improve performance through block reduction is by not using the time dimension at all. One example of this is a
situation we ran into with a client where we needed to calculate IRR on daily cash flows over the last 20 years. With 100
companies within 8 funds across 7,300 days (365 * 20), with different projections and scenarios applied, we had an IRR
calculation on a line item with tens of thousands of blocks. Considering the IRR formula is already computationally expensive
(We will go into this in another article), running scenarios on this was causing a 5+ second delay for the end user. The solution
was to replace real time day with a fake time day, which reduced the delay to less than a second. By utilizing fake date, we
divided our block count for that line item by 7,300.

It's important to note that we are only referring to Time Ranges in this section and not traditional Subsets, even though they are
very similar in practice. This is again due to the special nature of Time, in that the reduction of time periods reduces blocks,
while a normal subset does not.

For versions, this means going through each version and ensuring that it is necessary to the model. Adding new versions should
be a much bigger decision than adding a new member to a regular list!

You should now know some of the methods that can be used to reduce the number of blocks in your model. In our next article
we will go into how to reduce the size of the remaining blocks.

info@lionpointgroup.com

http://lionpointgroup.com/

https://www.linkedin.com/company/lionpoint-group/

Anaplan Performance Series Part III: Inter-Block Number of Calculations

In Part II we discussed the best way to reduce the number of blocks within a model. In this article we will
go into the ways in which we can reduce the number of cells, and in-turn calculations, within a block.

 Number of Calculations Efficiency of Calculations

Inter-block The number of blocks within a line item, or across
line items.

Reducing the blocks you have.

▪ Line Item Summaries

▪ Reduce Dependencies

▪ Time Ranges

The efficiency of block to block interactions

Optimizing the blocks you have.

▪ Non-Common Dimensions

▪ Calculation Sequence

▪ Selective Aggregation

▪ Dimension Order

Intra-block The number of cells within a block.

Reducing the cells you have.

▪ Extra Dimensionality

▪ Subsets

The efficiency of calculations across cells in a block

Optimizing the cells you have.

▪ Format Types

▪ Early Exits

▪ Formula Repetition

Intra-block, Number of Calculations

Now that we have reduced the number of blocks in our model, it is now time to reduce the number of cells within those blocks.
Two ways to do this is through Extra dimensionality and Subsets.

Extra Dimensionality

Extra Dimensionality is concerned with ensuring that a line item only has the necessary dimensions required for a calculation. A
common example is the PARENT(ITEM()) formula. A line item that just uses PARENT(ITEM()) On Parent =
(https://help.anaplan.com/anapedia/Content/Calculation_Functions/All/PARENT.html) On Item =
(https://help.anaplan.com/anapedia/Content/Calculation_Functions/All/ITEM.html) never needs more than 1 dimension
applied.

Griffin Knight

Copyright 2020 Lionpoint Group

info@lionpointgroup.com

March 20, 2020

mailto:info@lionpointgroup.com
http://lionpointgroup.com/
https://www.linkedin.com/company/lionpoint-group/
https://help.anaplan.com/anapedia/Content/Calculation_Functions/All/PARENT.html
https://help.anaplan.com/anapedia/Content/Calculation_Functions/All/ITEM.html

Anaplan Performance Series Part III: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 2 of 4

As we can see, there are only nine list members in the SKU list, meaning we only need to calculate nine cells. However, since the
Region dimension is also applied, we are calculating 27 cells!

By removing the Region dimension (in turn making the line item a subsidiary view) we ensured that this formula is calculating on
necessary cells (9 vs. 27).

Now you may be wondering why this is in the Intra-block section and not in the Inter-block section, didn’t we reduce the
number of blocks by removing a dimension with a parent? SKU has 2 parents and Region has 1 so we reduced the blocks in this
line item from (1+2) * (1+1) = 6 to (1+2) = 3. While this is true, in our example there was no summary method, so in reality we
did not reduce the block size, (1+0) * (1+0) vs. (1+0). What we did do was reduce the number of cells of our block by removing a
dimension that was not needed.

Anaplan Performance Series Part III: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 3 of 4

A best practice way to ensure that you don’t have extra dimensionality (or reducing the number of subsidiary views for model
cleanliness purposes) is to have a “properties” module for each of your dimensions as the need arises. Common line items to
include would be: ITEM(), PARENT(), CODE(), etc. This not only ensures that you don't have extra dimensionality, but it also
makes sure you only are performing these calculations once in the model. Below is an example of a Properties module (our
preferred syntax is usually: “PROPS_List Name”).

Being aware of your dimensionality as you are building is one of the key differentiators between an intermediate and an
advanced model builder. The way that modules pre-set the dimensions of line items can make this easy to miss. However, every
time a line item is created, you should ask yourself if the calculation requires all of the dimensions currently applied.

Subsets (https://help.anaplan.com/anapedia/Content/Modeling/Dimensions/List%20Subsets.html)

Perhaps the most straightforward way to reduce the number of cells in a block is to utilize subsets. The importance of subsets on
performance grows with the size of the list in question, along with the number of list members that can be removed through a
subset. In the example below, we have our full list of widgets, but let’s say that Widget 2 was discontinued. This means that we
don’t need it for our forecasting purposes.

https://help.anaplan.com/anapedia/Content/Modeling/Dimensions/List%20Subsets.html

Anaplan Performance Series Part III: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 4 of 4

Note that it may not be feasible to delete Widget 2 and its children since there is relevant historical data that needs to be
preserved. However, for forecasting purposes it no longer needs to be included in the dimension, making it an ideal candidate
for a Subset.

It is important to note that while Subsets can be extremely beneficial, if overused, they can become very burdensome to
maintain.

We have now gone through how to reduce the number of blocks in a model (Link to Part I), and how to reduce the number of
cells in a block. In the next two articles we will go into calculation efficiency from an inter and intra-block level.

info@lionpointgroup.com

http://lionpointgroup.com/

https://www.linkedin.com/company/lionpoint-group/

Anaplan Performance Series Part IV: Inter-Block Number of Calculations

In Parts II & III we went into how to improve model performance by reducing the number of calculations in
the model. In Part IV and V we will explore methods that will improve the efficiency of existing calculations.

 Number of Calculations Efficiency of Calculations

Inter-block The number of blocks within a line item, or across
line items.

Reducing the blocks you have.

▪ Line Item Summaries

▪ Reduce Dependencies

▪ Time Ranges

The efficiency of block to block interactions

Optimizing the blocks you have.

▪ Non-Common Dimensions

▪ Calculation Sequence

▪ Selective Aggregation

▪ Dimension Order

Intra-block The number of cells within a block.

Reducing the cells you have.

▪ Extra Dimensionality

▪ Subsets

The efficiency of calculations across cells in a block

Optimizing the cells you have.

▪ Format Types

▪ Early Exits

▪ Formula Repetition

Inter-block, Efficiency of Calculations

We previously learned that Anaplan groups cells into blocks, enabling significantly higher levels of computation than calculating
at a cell level. For this to work, blocks need to be able to communicate with each other to perform calculations. If the model
builder does not provide the correct instructions, the blocks are unable to communicate, as you may have experienced:

Not only do we need to provide the blocks a way to communicate, the method we choose also impacts the speed at which the
communication occurs. We want the blocks to talk to each other as fast as possible.

Four ways to do this is by understanding dimension order, calculations on non-common dimensions, calculation sequence, and
selective aggregation.

Dimension Order (https://community.anaplan.com/t5/Best-Practices/Dimension-Order/ta-p/32934)

Griffin Knight

Copyright 2020 Lionpoint Group

info@lionpointgroup.com

March 20, 2020

mailto:info@lionpointgroup.com
http://lionpointgroup.com/
https://www.linkedin.com/company/lionpoint-group/
https://community.anaplan.com/t5/Best-Practices/Dimension-Order/ta-p/32934

Anaplan Performance Series Part IV: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 2 of 11

One of the simplest ways to improve the inter-block performance of your model is to look out for the order of your dimensions.
Below is an example of two modules with the same dimensions, but in different order.

Dimensions get out of order during the creation of the module. Depending on where the dimensions are placed in the “New
Module” screen, that is the priority with which they will be ordered. The priority of the dimensions goes: pages, rows, and
columns.

Luckily, it’s as easy to fix as it is to cause. In order to get your dimensions in the correct order, you simply click the ellipses in the
“Applies To” of the module, and press “OK”. This will set your dimensions to the “natural” order, which is prioritized by pos ition
in “Lists”.

Now that we are aware of this issue and how to fix it, let's now look at why it causes issues in the first place.

When two blocks interact with each other, it needs to index each cell to be sure that the cells of one block match up with
another. However, when the dimensions are in a different order, it makes this process slightly more time consuming. Below is an
example of how Anaplan may index the two modules in our example.

As you may notice, Widget 1 in Canada is indexed with a 4 in the Units Sold module, but a 2 in the Price module. Luckily, Anaplan
will notice this inconsistency and fix it before it goes about making the calculation. However, this fix comes at a cost to
performance. Below is an example of how the system must reconcile the two line items before it calculates them.

Anaplan Performance Series Part IV: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 3 of 11

What would it look like if our dimensions were in the correct order?

Without having to first reconcile the index of the modules, the engine can get straight to calculating. As you may be able to tell,
the indexing process gets longer the more cells we are dealing with.

Ensuring the order of your dimensions is one of the quickest and easiest ways to ensure that your blocks are communicating as
efficiently as possible.

Calculations on Non-Common Dimensions

One way that inter-block performance can be evaluated is to look out for calculations on non-common dimensions. This is best
explained with an example. Let's say we have a module called ‘Sales by Region’, which is dimensioned by Region. In this module
we have two line items: ‘Product Sales’ and ‘Subscription Sales’. Now let's say we have a second module: ‘Total Allocated Sales’.
This module is dimensioned by Region as well, but it is also dimensioned by Channel. The Total Sales module needs to take the
total sales of the Region and multiply it by the channel allocation %. Spend some time looking at the example below.

Anaplan Performance Series Part IV: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 4 of 11

What is wrong with the above scenario? The issue is that you are doing a calculation on a non-common dimension. The ‘Total
Sales’ line item is adding together the product sales and subscription sales line items which are in a different block. The sales line
items are in a block that is made up of just the Region dimension, the Total Sales is a block consisting of Region and Channel.

This is the root of the issue; you are calculating a Region only calculation with Channel applied as well. The better way to do this
is to perform the sum of the sales line items on a common dimension. To achieve this, you could create a support line item that
sums the Region sales together before introducing the Channel dimension. Below is an example showing this.

Using a support line item to maintain calculations over common dimensions allows us to ensure optimal inter-block
communication & performance.

Anaplan Performance Series Part IV: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 5 of 11

Calculation Sequence - Line Items

Explaining calculation sequence is best done through a metaphor. Imagine a
toll bridge, in which each car is a required calculation and the toll payment
is the execution of the calculation. What can we do to process as many
calculations as fast as possible? In Articles II & III our answer would have
been to reduce the numbers of cars on the road. Optimizing calculation
sequence would be equivalent to building more lanes.

Anaplan cores have 144 threads that can be used in parallel to perform
calculations, these can quite literally be thought of as toll bridge lanes our
cars can use. The trick however is making sure that our formulas make use
of all the lanes. If we have 5 cars that are chained together, they will all
have to use the same lane, even if other lanes are empty.

If our goal is to calculate Margin % (Profit / Revenue), we first need to calculate Revenue (Volume * Price), followed by COGS
(Volume * Unit Cost) to get Profit (Revenue - COGS). Below is a representation of how these calculations would need to be
ordered so we can get to our end goal of Margin %.

Three waves

As you can see, in order to get to Margin %, we need to first calculate Profit, which requires us to first calculate Revenue and
COGS. Each of these steps is called a wave, which can be thought of as the number of cars that are chained together. Here we
have a series of cars that must use the same toll lane despite 143 other lanes being open!

How can we maximize our utilization of Anaplan’s 144 threads? Let's imagine we wrote our formulas a little differently.

Volume

Price

Unit cost

Revenue = volume*

price

COGS = volume*

Unit cost

Profi t = revenue

- COGS

Margin % = profit /

revenue

Anaplan Performance Series Part IV: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 6 of 11

As you can see, we get the exact same results but now each of our 4 calculation line items only refers to the data line items, and
in turn is not dependent on any other calculation.

One wave

With these new formulas, we can now perform all of the calculations in one wave as opposed to three, and all of our cars can
use their own lane in the toll bridge.

We believe that calculation sequence is one of the most important performance considerations when it comes to inter-block
calculation efficiency.

Now in our example we were only looking at line item blocks in isolation. This concept applies in the same way to Time &
Versions, which we know from Part I work the same way as line items in their structure.

Circular reference

Volume

Price

Unit cost

Revenue = Volume* price

COGS = Volume* Unit cost

Profi t = Volume* (Price – unit cost)

Margin % = 1 Unit cost / price

Anaplan Performance Series Part IV: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 7 of 11

As you can see, using PREVIOUS() (https://help.anaplan.com/anapedia/Content/Calculation_Functions/All/PREVIOUS.html) on a
time dimension means that we avoid circular references because we are referencing different blocks.

The reason this is important is because it works exactly like calculation sequence in line items: using PREVIOUS (or NEXT) has the
potential to create a massive chain of blocks. Imagine you have a 5-year timescale on months using previous, that is the
equivalent of 60 line items each daisy chained together. The last month cannot be calculated until the one before it has been
calculated, all the way to the first month.

With that fact known, it's important to keep an eye on your time dimension if looking for performance improvements, especially
if the timescale is large enough.

There is also another option: Cumulate
(https://help.anaplan.com/anapedia/Content/Calculation_Functions/All/CUMULATE.html)

CUMULATE() is interesting in that it is the opposite of +PREVIOUS() from a technical level. Where +PREVIOUS() requires each line
item to be calculated in order, CUMULATE() can calculate simultaneously. CUMULATE() however, is going to require significantly
more calculations (or “reads”) than +PREVIOUS() would, despite all processing concurrently. In CUMULATE() each period needs
to refer to every time period behind it - which can lead to a lot more calculations.

January

Opening balance

Clos ing balance

February

Opening balance

Clos ing balance

March

Opening balance

Clos ing balance

Cash in

Cash out

Cash in

Cash out

Cash in

Cash out

https://help.anaplan.com/anapedia/Content/Calculation_Functions/All/PREVIOUS.html
https://help.anaplan.com/anapedia/Content/Calculation_Functions/All/CUMULATE.html

Anaplan Performance Series Part IV: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 8 of 11

Compare this with +PREVIOUS()

So to continue with our beaten metaphor: CUMULATE() has a large number of cars but they can use their own lane,
+PREVIOUS() has less cars but they must follow each other through a lane. Below is a chart showing the difference.

What this means in practice is that it depends. Sometimes CUMULATE() will be more efficient than +PREVIOUS(), but sometimes
not. The rule of thumb should be that on a larger time scale (> a few hundred), you may need to be wary of CUMULATE(), since
the number of reads required is so great.

I would also note that, while it doesn't necessarily pertain to performance, you will often be able to avoid circular references if
you don’t use CUMULATE(), since it effectively kills the independence of your time blocks.

January

Sales

CUMULATE (Sa les)

February

Sales

CUMULATE (Sa les)

March

Sales

CUMULATE (Sa les)

Apri l

Sales

CUMULATE (Sa les)

May

Sales

CUMULATE (Sa les)

Wave 1

1 read 2 reads 3 reads 4 reads 5 reads

January

Sales

Sales + PREVIOUS
(Sa les)

February

Sales

Sales + PREVIOUS
(Sales)

March

Sales

Sales + PREVIOUS
(Sales)

Apri l

Sales

Sales + PREVIOUS
(Sales)

May

Sales

Sales + PREVIOUS
(Sales)

Wave 1

1 read 2 reads 2 reads 2 reads 2 reads

Wave 2 Wave 3 Wave 4 Wave 5

Anaplan Performance Series Part IV: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 9 of 11

Selective Aggregation - Lists

Our last section for inter-block calculation efficiency is Selective Aggregation. Selective Aggregation is the idea that Anaplan will
recalculate blocks of data in order to calculate a parent block.

Below is an example of a line item that is dimensioned by city.

Single level aggregation

If Toronto were to change, all other cities would need to be calculated in order to recalculate the “All Cities” top level. If there
were no top level, this recalculation would not need to occur. However, the more levels we add to the hierarchy, the less
calculations need to occur. Below is an example of the same list but with a multi-level hierarchy.

Multi level aggregation

One level example Sales

New York 214

San Francisco 643

Denver 534

Toronto 646

Vancouver 6,433

London 4,326

Brighton 245

Liverpool 2,354

All cities 15,395

Al l ci ties

New York

San Francisco

Denver

Toronto

Vancouver

London

Brighton

Liverpool

Multi level example Sales

New York 214

San Francisco 643

Denver 534

US 1,391

Toronto 646

Vancouver 6,433

Canada 7,079

North America 8,470

London 4,326

Brighton 245

Liverpool 2,354

UK 6,925

Europe 6,925

All regions 15,395

Al l ci ties

New York

San Francisco

Denver

Toronto

Vancouver

London

Brighton

Liverpool

Europe

North America

UK

US

Canada

Anaplan Performance Series Part IV: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 10 of 11

In this scenario, if Toronto were to change, it would require only Vancouver to be recalculated (and in turn the parents). This
introduces the idea that a very large list can benefit from even an arbitrary level above it, to prevent large recalculation events.

You may have noticed that these two examples look similar to the CUMULATE() and PREVIOUS() phenomenon we saw earlier.
This is because they are - while multi-level aggregation can reduce the number of calculations, it introduces a chain of
calculations that must occur before another can begin.

Selective Aggregation - Line Items (https://community.anaplan.com/t5/Best-Practices/Formula-Structure-for-Performance/ta-
p/33177)

Just as levels in a list affect recalculation, so do line item hierarchies. We don’t usually think of line items belonging to
hierarchies (unless they are formally displayed in a Line Item Subset), but they effectively are when it comes to recalculation.

Below is an example, pulled from Anapedia, of a line item for profit that references 5 different line items, each in their own
modules.

The issue with this, is that if one of those line items recalculates, all the others will have to as well. This can become an issue if
those modules have complicated logic.

The solution is the same as what we did for our city list: introduce an arbitrary parent level.

Input modules

Product sales

Services sales

Op Ex

COGS

Rent & uti lities

Reporting module

Total profit = Product
Sa les + Services sales –

Op Ex – COGS –
Rent & uti lities

https://community.anaplan.com/t5/Best-Practices/Formula-Structure-for-Performance/ta-p/33177
https://community.anaplan.com/t5/Best-Practices/Formula-Structure-for-Performance/ta-p/33177

Anaplan Performance Series Part IV: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 11 of 11

By adding new line items that act as a parent, it “protects” us from having to recalculate at the downstream line items.

Now adding random line items (and parent levels) goes directly against some of the items discussed in part II & III. This is very
much the balancing act that is Anaplan architecture. Sometimes more cells/blocks can improve performance if they can reduce
unnecessary calculations.

We have now looked at how to improve the inter-block performance of our model, in the final article, we will look at intra-block
performance.

Input modules

Product sales

Services sales

Op Ex

COGS

Rent & uti lities

Reporting module

Product sales
Services sales

Op Ex
COGS

Rent & uti lities

Tota l profit

info@lionpointgroup.com

http://lionpointgroup.com/

https://www.linkedin.com/company/lionpoint-group/

Anaplan Performance Series Part V: Inter-Block Number of Calculations

In Parts II & III we went into how to improve model performance by reducing the number of calculations in
the model. In Part IV and V we will explore methods that will improve the efficiency of existing calculations.

 Number of Calculations Efficiency of Calculations

Inter-block The number of blocks within a line item, or across
line items.

Reducing the blocks you have.

▪ Line Item Summaries

▪ Reduce Dependencies

▪ Time Ranges

The efficiency of block to block interactions

Optimizing the blocks you have.

▪ Non-Common Dimensions

▪ Calculation Sequence

▪ Selective Aggregation

▪ Dimension Order

Intra-block The number of cells within a block.

Reducing the cells you have.

▪ Extra Dimensionality

▪ Subsets

The efficiency of calculations across cells in a block

Optimizing the cells you have.

▪ Format Types

▪ Early Exits

▪ Formula Repetition

Intra-block, Efficiency of Calculations

The final piece of the performance quadrant is intra-block calculation efficiency. This pertains to the efficiency and speed at
which a block itself is calculated.

If inter-block efficiency was concerned with utilizing as many toll lanes as possible, intra-block efficiency deals with the speed of
said cars.

There are three performance considerations for intra-block efficiency: Formula Repetition, Early Exits, and Format Types.

Formula Repetition

There is a common adage in the Anaplan world that says, “calculate once, reference many times”. Dealing with formula
repetition means putting this into practice.

When a model has a high degree of formula repetition, there are blocks of information (line items) that both perform the same
calculation, when it really only needs to be done once. Below is an example of two line items that both want to use logic for time
periods in the future.

Griffin Knight

Copyright 2020 Lionpoint Group

info@lionpointgroup.com

March 20, 2020

mailto:info@lionpointgroup.com
http://lionpointgroup.com/
https://www.linkedin.com/company/lionpoint-group/

Anaplan Performance Series Part V: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 2 of 6

For readability, here is both formulas written out in Sublime:

So what is the problem here? How else would we indicate future periods?

When dealing with Boolean logic, the answer will always be true or false (a 1 or a 0). Everything that fits between the “IF” and
the “THEN” of every statement, can be a Boolean.

Therefore instead of having to calculate ‘ITEM(TIME) >= PERIOD(CURRENTPERIODSTART())’ for each of these line items, we can
create a Boolean that performs this logic once, and reference it by our line items.

In addition, the forecast periods logic also does not need to be dimensioned by Country, as our module was. It only needs to be
dimensioned by time. This is a create example of the use of a time mapping or filters modules - that can contain all of your logic
that pertains directly to time. This is shown below.

Anaplan Performance Series Part V: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 3 of 6

Now to finish our example, we will now have each of our line items reference the forecast periods line item in the time mapping
module.

Reducing “IF” logic to a pre-calculated Boolean is highly advised. In addition to performance improvements by reduced
calculation, there are also functional benefits. If for whatever reason the modeler wanted to change the forecast periods to be
“> Current Period + 1”, they would only now need to change the forecast periods line item in the time mapping module, instead
of every line with replicating calculations.

Early Exits (https://community.anaplan.com/t5/Best-Practices/Formula-Structure-for-Performance/ta-p/33177)

Accounting for early exits while writing a formula allows your block to calculate only the necessary cells. Early exits are perhaps
one of the most useful performance tricks to learn, primarily because they have no downside. A well written formula will always
be better than a poorly written one.

Let's now look at an example that you may have seen before on Anapedia. We have a monthly time scale, from January to
December. A single month is either a part of the summer promotion, the winter promotion, or neither. We now need to write a
formula based on this logic. A module below depicts this.

https://community.anaplan.com/t5/Best-Practices/Formula-Structure-for-Performance/ta-p/33177

Anaplan Performance Series Part V: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 4 of 6

Below is the Total Costs formula written out in Sublime.

Let’s look in more detail to why this is a poorly written formula. We start with 12 months that need to run through our formula.
The first IF statement checks all 12 months to see if they are a part of the summer promotion, of which 2 of them are. June and
July, being a part of the summer promotion have now exited from the rest of the formula. We now have 10 remaining months
that get testing for the second IF statement, in which 3 more exit. We now have 7 months that make it through the entire
formula.

Below is a representation of the number of months that make it through each “level” of the IF statement.

The funnel chart shows that we had 58% (7/12) of our cells go through our entire calculation!

How can we fix this? The trick is to get as many cells (or blocks in this case since we are dealing with time) to leave the formula
as early as possible, so they do not need to be calculated at each level.

Let's look at a count of the number of months in each category to help us decide.

Based on this information we should start with No Promotion, followed by winter, and lastly summer. Written like this:

Anaplan Performance Series Part V: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 5 of 6

Let's look at our funnel chart now.

We see that with our updated formula, only 17% (2/12) of our cells made it through the entire formula, much better than what
we had before.

The last improvement would be to take what we learned in the formula repetition section to turn our first IF statement into a
Boolean.

To summarize what we learned in the example: we want to consider every cell in our block, and get it to exit the formula as fast
as possible. However, you may not always know which situation occurs more frequently. This is OK most of the time, but when
dealing with larger data sizes, it may be worthwhile to find out.

Early exits also tie into large nested IF THEN ELSE statements, which are best to be avoided. It is almost always better to split out
your large statements into smaller ones, to take advantage of early exits.

Anaplan Performance Series Part V: Inter-Block Number of Calculations
Copyright 2020 Lionpoint Group
March 20, 2020

 6 of 6

Early Exits can also be utilized on non-number formulas as well. For example, FINDITEM() can be particularly performance
intensive depending on the size and text size of the list/codes in question. If some of the text rows are blanks - there is no need
to run the calculation. I would most likely expect this to happen on a transaction list where a cost center or GL account needs to
be mapped.

Instead of the formula just being FINDITEM() we can add logic to exit the calculation for some cells depending on if we have
more blanks or more non-blanks:

This might seem counter intuitive, aren't we making this block less performant by adding an IF statement? In this instance the
answer is no due to saving the need to perform the FINDITEM().

Data Types

Lastly, the type of data of each block can have a significant impact on the performance and size of your model. The rule of
thumb here is fairly straightforward: Booleans are good, text is bad.

It makes sense when you think about it. Booleans can only contain a true or a false, whereas a text field can be anything.

Conclusion

I hope that this article series has been helpful in describing how the Anaplan platform functions, along with relevant actionable
methods for improving performance. It is also important to note that this is not an exhaustive list. My attempt here was to
provide examples of how the framework presented in part I can be applied.

Regardless if you are building for performance or just diagnosing an issue - understanding the why is the best way to come up
with the ideal solution.

